作业帮 > 高考 > 教育资讯

2016年吉林高考数学模拟试题:专项练习及答案

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/25 19:53:30 高考
2016年吉林高考数学模拟试题:专项练习及答案高考

1.已知M(-2,0),N(2,0),|PM|-|PN|=3,则动点P的轨迹是(  )

A.双曲线 B.双曲线左边一支

C.双曲线右边一支 D.一条射线

2.若双曲线方程为x2-2y2=1,则它的右焦点坐标为(  )

A. B. C. D.(,0)

3.(2014大纲全国,文11)双曲线C:=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于(  )

A.2 B.2 C.4 D.4

4.过双曲线=1(a>0,b>0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率是(  )

A. B. C.2 D.

5.已知双曲线的两个焦点为F1(-,0),F2(,0), M是此双曲线上的一点,且满足=0,||||=2,则该双曲线的方程是(  )

A.-y2=1 B.x2-=1 C.=1 D.=1

6.已知双曲线C的离心率为2,焦点为F1,F2,点A在C上.若|F1A|=2|F2A|,则cosAF2F1=(  )

A. B. C. D.

7.在平面直角坐标系xOy中,双曲线=1上一点M的横坐标为3,则点M到此双曲线的右焦点的距离为     .

8.A,B是双曲线C的两个顶点,直线l与双曲线C交于不同的两点P,Q,且与实轴所在直线垂直.若=0,则双曲线C的离心率e=     .

9.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,-).

(1)求双曲线方程;

(2)若点M(3,m)在双曲线上,求证:=0;

(3)在(2)的条件下求F1MF2的面积.

10.已知点M(-2,0),N(2,0),动点P满足条件|PM|-|PN|=2,记动点P的轨迹为W.

(1)求W的方程;

(2)若A和B是W上的不同两点,O是坐标原点,求的最小值.

11.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为(  )

A. B.2 C.4 D.8

12.已知点P是双曲线=1(a>0,b>0)右支上一点,F1,F2分别为双曲线的左、右焦点,点I为PF1F2的内心,若+λ成立,则λ的值为(  )

A. B. C. D.

13.若点O和点F(-2,0)分别为双曲线-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为(  )

A.[3-2,+∞) B.[3+2,+∞)

C. D.

14.(2014浙江,文17)设直线x-3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是     .

15.

(2014湖南,文20)如图,O为坐标原点,双曲线C1:=1(a1>0,b1>0)和椭圆C2:=1(a2>b2>0)均过点P,且以C1的两个顶点和C2的两个焦点为顶点的四边形是面积为2的正方形.

(1)求C1,C2的方程;

(2)是否存在直线l,使得l与C1交于A,B两点,与C2只有一个公共点,且||=||?证明你的结论.

16.已知双曲线E:=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=-2x.

(1)求双曲线E的离心率;

(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、四象限),且OAB的面积恒为8.试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程;若不存在,说明理由.

参考答案:

1.C 解析:|PM|-|PN|=3<4,

∴由双曲线定义知,其轨迹为双曲线的一支.

又|PM|>|PN|,∴点P的轨迹为双曲线的右支.

2.C 解析:双曲线的标准方程为x2-=1,a2=1,b2=.

∴c2=a2+b2=.

∴c=,故右焦点坐标为.

3.C 解析:e=2,∴=2.

设焦点F2(c,0)到渐近线y=x的距离为,

渐近线方程为bx-ay=0,

.

∵c2=a2+b2,∴b=.

由=2,得=2,

=4,

解得c=2.焦距2c=4,故选C.

4.A 解析:如图所示,在RtOPF中,OMPF,且M为PF的中点,

则POF为等腰直角三角形.

所以OMF也是等腰直角三角形.

所以有|OF|=|OM|,即c=a.

故e=.

5.A 解析:由=0,可知.

可设||=t1,||=t2,

则t1t2=2.

在MF1F2中,=40,

则|t1-t2|=

==6=2a.

解得a=3.故所求双曲线方程为-y2=1.

6.A 解析:双曲线的离心率为2,=2,

∴a∶b∶c=1∶∶2.

∴|AF1|=4a,|AF2|=2a,

∴|F1F2|=2c=4a,

∴cos∠AF2F1

=

=,

选A.

7.4 解析:由题意点M的坐标可求得为M(3,±),双曲线的右焦点的坐标为F2(4,0).

由两点间的距离公式得|F2M|==4.

8. 解析:如图所示,设双曲线方程为=1,取其上一点P(m,n),

则Q(m,-n),由=0可得(a-m,-n)·(m+a,-n)=0,

化简得a2-m2+n2=0.

又=1可得b=a,

故双曲线的离心率为e=.

9.(1)解:因为e=,

所以可设双曲线方程为x2-y2=λ.

因为双曲线过点(4,-),

所以16-10=λ,即λ=6.

所以双曲线方程为=1.

(2)证明:由(1)可知,在双曲线中a=b=,所以c=2.

所以F1(-2,0),F2(2,0).

所以=(-2-3,-m),

=(2-3,-m),

则=9-12+m2=m2-3.

因为点(3,m)在双曲线上,

所以9-m2=6,即m2=3.

所以=m2-3=0.

(3)解:由 (2)知F1MF2的高h=|m|=,由F1MF2的底边|F1F2|=4,

则=6.


10.解:(1)由|PM|-|PN|=2知动点P的轨迹是以M,N为焦点的双曲线的右支,实半轴长a=.

又焦距2c=4,所以虚半轴长b=.

所以W的方程为=1(x≥). (2)设A,B的坐标分别为(x1,y1),(x2,y2).

当ABx轴时,x1=x2,y1=-y2,

从而=x1x2+y1y2==2.

当AB与x轴不垂直时,设直线AB的方程为y=kx+m(k≠±1),与W的方程联立,消去y得(1-k2)x2-2kmx-m2-2=0,

则x1+x2=,x1x2=,

所以=x1x2+y1y2

=x1x2+(kx1+m)(kx2+m)

=(1+k2)x1x2+km(x1+x2)+m2

=+m2

==2+.

又因为x1x2>0,所以k2-1>0.

所以>2.

综上所述,当ABx轴时,取得最小值2.

11.C 解析:设等轴双曲线方程为x2-y2=m(m>0),

因为抛物线的准线为x=-4,

且|AB|=4,所以|yA|=2.

把坐标(-4,2)代入双曲线方程得m=x2-y2=16-12=4,

所以双曲线方程为x2-y2=4,

即=1.

所以a2=4,所以实轴长2a=4.

12.B 解析:设PF1F2内切圆半径为r,根据已知可得×|PF1|×r=×|PF2|×r+×2c×r,

整理可得|PF1|=|PF2|+2λc.

由双曲线的定义可得

|PF1|-|PF2|=2a,

则2λc=2a,故λ=.

13.B 解析:由a2+1=4,得a=,

则双曲线方程为-y2=1.

设点P(x0,y0),则=1,

即-1.

=x0(x0+2)+

=+2x0+-1

=,

x0≥,∴当x0=时,取最小值3+2.故的取值范围是[3+2,+∞).

14. 解析:双曲线=1的两条渐近线方程分别是y=x和y=-x.

解得A,

解得B.

设AB中点为E,

则E.

由于|PA|=|PB|,所以PE与直线x-3y+m=0垂直,

而kPE=,

于是=-1.

所以a2=4b2=4(c2-a2).

所以4c2=5a2,解得e=.

15.解:(1)设C2的焦距为2c2,由题意知,2c2=2,2a1=2.从而a1=1,c2=1.

因为点P在双曲线x2-=1上,所以=1.故=3.

由椭圆的定义知2a2

==2.

于是a2==2.

故C1,C2的方程分别为x2-=1,=1.

(2)不存在符合题设条件的直线.

若直线l垂直于x轴,因为l与C2只有一个公共点,所以直线l的方程为x=或x=-.

当x=时,易知A(),B(,-),

所以||=2,||=2.

此时,||≠||.

当x=-时,

同理可知,||≠||.

若直线l不垂直于x轴,设l的方程为y=kx+m.

得(3-k2)x2-2kmx-m2-3=0.

当l与C1相交于A,B两点时,

设A(x1,y1),B(x2,y2),

则x1,x2是上述方程的两个实根,

从而x1+x2=,x1x2=.

于是y1y2=k2x1x2+km(x1+x2)+m2=.

由得(2k2+3)x2+4kmx+2m2-6=0.

因为直线l与C2只有一个公共点,所以上述方程的判别式Δ=16k2m2-8(2k2+3)(m2-3)=0.

化简,得2k2=m2-3,

因此=x1x2+y1y2=≠0,

于是+2-2,

即||≠||,

故||≠||.

综合,②可知,不存在符合题设条件的直线.

16.解法一:(1)因为双曲线E的渐近线分别为y=2x,y=-2x,

所以=2,所以=2,

故c=a,

从而双曲线E的离心率e=.

(2)由(1)知,双曲线E的方程为=1.

设直线l与x轴相交于点C.

当lx轴时,若直线l与双曲线E有且只有一个公共点,

则|OC|=a,|AB|=4a,

又因为OAB的面积为8,

所以|OC|·|AB|=8,

因此a·4a=8,解得a=2,

此时双曲线E的方程为=1.

若存在满足条件的双曲线E,则E的方程只能为=1.

以下证明:当直线l不与x轴垂直时,双曲线E:=1也满足条件.

设直线l的方程为y=kx+m,依题意,得k>2或k<-2,则C.

记A(x1,y1),B(x2,y2).

由得y1=,

同理得y2=,

由SOAB=|OC|·|y1-y2|得,

=8,

即m2=4|4-k2|=4(k2-4).

由得,

(4-k2)x2-2kmx-m2-16=0.

因为4-k2<0,

Δ=4k2m2+4(4-k2)(m2+16)=-16(4k2-m2-16),又m2=4(k2-4),

所以Δ=0,即l与双曲线E有且只有一个公共点.

因此,存在总与l有且只有一个公共点的双曲线E,且E的方程为=1.

解法二:(1)同解法一.

(2)由(1)知,双曲线E的方程为=1.

设直线l的方程为x=my+t,A(x1,y1),B(x2,y2).

依题意得-2或k<-2.

由得,(4-k2)x2-2kmx-m2=0,

因为4-k2<0,Δ>0,

所以x1x2=,

又因为OAB的面积为8,

所以|OA|·|OB|·sinAOB=8,

由已知sinAOB=,

所以=8,化简得x1x2=4.

所以=4,即m2=4(k2-4).

由(1)得双曲线E的方程为=1,由得,(4-k2)x2-2kmx-m2-4a2=0,

因为4-k2<0,直线l与双曲线E有且只有一个公共点当且仅当Δ=4k2m2+4(4-k2)(m2+4a2)=0,

即(k2-4)(a2-4)=0,所以a2=4,

所以双曲线E的方程为=1.

当lx轴时,由OAB的面积等于8可得l:x=2,又易知l:x=2与双曲线E:=1有且只有一个公共点.

综上所述,存在总与l有且只有一个公共点的双曲线E,且E的方程为=1.

高考