数学归纳法题设P1,P2,P3...Pn,...是曲线y=x^1/2上的点列,Q1,Q2,...Qn,...是x轴正半轴上的点列,且三角形OQ1P1,三角形OQ2P2,...,三角形Qn-1QnPn,...都是正三角形,设他们的边长为a1,a2,...,an,...求证a1+a2+...+an=n(n+1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/29 16:48:16

数学归纳法题设P1,P2,P3...Pn,...是曲线y=x^1/2上的点列,Q1,Q2,...Qn,...是x轴正半轴上的点列,且三角形OQ1P1,三角形OQ2P2,...,三角形Qn-1QnPn,...都是正三角形,设他们的边长为a1,a2,...,an,...求证a1+a2+...+an=n(n+1)
数学归纳法题
设P1,P2,P3...Pn,...是曲线y=x^1/2上的点列,Q1,Q2,...Qn,...是x轴正半轴上的点列,且三角形OQ1P1,三角形OQ2P2,...,三角形Qn-1QnPn,...都是正三角形,设他们的边长为a1,a2,...,an,...
求证a1+a2+...+an=n(n+1)/3
O点是原点

数学归纳法题设P1,P2,P3...Pn,...是曲线y=x^1/2上的点列,Q1,Q2,...Qn,...是x轴正半轴上的点列,且三角形OQ1P1,三角形OQ2P2,...,三角形Qn-1QnPn,...都是正三角形,设他们的边长为a1,a2,...,an,...求证a1+a2+...+an=n(n+1)
从Qn-1QnPn来看,第二个三角形应该是Q1Q2P2吧.
这样先对于OQ1P1,直线y=(3^0.5)x 与 x=y^2相交 易求得y1=(3^0.5)/3,x1=1/3,于是边长a1是2/3=1×(1+1)/3,对n=1满足
假设对n=k满足等式,即有归纳假设a1+a2+...+ak=k(k+1)/3
则当n=k+1时,点Q[k]的横坐标x[k]=a1+a2+...+ak=k(k+1)/3
然后过点(x[k],0)作直线y=(3^0.5)(x - k(k+1)/3),求出与曲线交点纵坐标y[Pk+1],乘以2/3^0.5可得a[k+1].然后算出a[k+1]+k(k+1)/3=(k+1)(k+2)/2成立
综上,对一切自然数n,原式都成立.

O点不会是原点吧?如果O是原点就构不成正三角形。

数学归纳法题设P1,P2,P3...Pn,...是曲线y=x^1/2上的点列,Q1,Q2,...Qn,...是x轴正半轴上的点列,且三角形OQ1P1,三角形OQ2P2,...,三角形Qn-1QnPn,...都是正三角形,设他们的边长为a1,a2,...,an,...求证a1+a2+...+an=n(n+1) 设p1,p2,p3~pn……的逆序数为K,那么……pn~p3,p2,p1的逆序数是多少? P/W=P1/W1+P2/W2+P3/W3+..+Pn/Wn 意思?如题 数学式子求和求1/P1+ 1/P2 + 1/P3 +...+ 1/Pn = 其中n趋于无穷,P1,P2,P3...Pn 为素数 3,5,7,11,13...Pn. 已知:一列数p1,p2,p3,p4...pn(n为正整数)满足...已知:一列数p1,p2,p3,p4...pn(n为正整数)满足pn+pn+1+pn+2+pn+3=4,若p3=—5,p4=8,p6=2,求p1的值是多少?设sn=p1+p2+p3+...pn 求s2007的值 请列出算式, 2011清华等七校自主招生数学压轴题设Pn表示连续抛n次硬币,不出现连续三次正面的概率.1)求P1,P2,P3,P42)求Pn的递推和通项3)求Pn的极限并阐述其实际意义 设p1,p2,p3为三个质数,且p2=p1+4,p3=p1+8,求证p1=3 设p1,p2,p3为三个质数,且p2=p1+4,p3=p1+8 ,求证:p1=3 p1,p2,p3是质数.p1=5,p2•p3=p1+p2+p3即p2•p3=5+p2+p3,求p1+p2+p3=? 一道高中奥数题如果p1,p2,p3...,pn是不同的质数,证明1分之p1+1分之p2+...+1分之pn不是整数. 已知p1、p2、p3,pn是以0为圆心的n等分点,求证向量0p1+向量0p2+、、、+向量0pn=0, 2011自主招生华约压轴.设Pn表示连续抛n次硬币,不出现连续三次正面的概率.1)求P1,P2,P3,P42)求Pn的递推和通项3)求Pn的极限并阐述其实际意义P1=P2=1,P3=7/8,P4=13/16递推式算出来Pn+1=Pn-1/16Pn-3.很奇怪然 设P1,P2···,Pn是1,2,···,n的任意排列求证:1/(P1+P2)+1/(P2+P3)+···+1/(Pn-1+Pn)>(n-1)/(n+2)大手来解.过程要看的懂啊. P1、P2、P3、P4分别表示四个语句,存在下列的前趋关系P1->P2,P1->P3,P3->P2A.P1 P2 P3 B、P1 P3 P2 C.P2 P1 P3 B、P3 P1 P2 九年义务教育六年级第二学期数学练习册的答案!P1,P2,和P3的第一道题(5.1 5.2) 串联电路总功率等于各功率之和:P总=P1+P2+P3+……+Pn【推导式:P1P2/(P1+P2)】这是怎么推导出来的 Problem DescriptionA sequence contains n integers.A sequence p1,p2,p3...pn is a good sequence if it satisfies pi 一道关于质数的证明题P1=2 P2=3 P3=5 P4 =7 Pn 是第N个质数 证明 Pn小于2^(2^n)