试证明:设A为n阶实对称矩阵,且A^2=A,则存在正交矩阵T,使得T^-1AT=diag(Er,0),其中r为秩,Er为r阶单位矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/23 06:50:45

试证明:设A为n阶实对称矩阵,且A^2=A,则存在正交矩阵T,使得T^-1AT=diag(Er,0),其中r为秩,Er为r阶单位矩阵
试证明:设A为n阶实对称矩阵,且A^2=A,则存在正交矩阵T,使得T^-1AT=diag(Er,0),其中r为秩,Er为r阶单位矩阵

试证明:设A为n阶实对称矩阵,且A^2=A,则存在正交矩阵T,使得T^-1AT=diag(Er,0),其中r为秩,Er为r阶单位矩阵
证明:A为实对称矩阵,则币可以对角化,令Aa=xa则 A^2=A x^2a^2=xa x(x-1)a=0 a≠0,x=0,1 则A矩阵的特征值只能为0,1 所以r(A)=r(=特征值非0的个数所以必存在可逆矩阵T使得 T^(-1)AT=diag(Er,0)