英语翻译1.IntroductionExtensive areas of the arid and semiarid regions have soils containing concentrations of soluble salts sufficient to adversely affect plant growth.One of the cost-effective strategies for cop- ing with salinity involves grow

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/06 08:26:10

英语翻译1.IntroductionExtensive areas of the arid and semiarid regions have soils containing concentrations of soluble salts sufficient to adversely affect plant growth.One of the cost-effective strategies for cop- ing with salinity involves grow
英语翻译
1.Introduction
Extensive areas of the arid and semiarid regions have soils containing concentrations of soluble salts sufficient to adversely affect plant growth.One of the cost-effective strategies for cop- ing with salinity involves growing crops that have an inherent ability to tolerate saline conditions [1].In recent years,studies indicated that arbuscular mycorrhizal fungi (AMF) can increase plant growth and uptake of nutrients,decrease yield losses of tomato under saline conditions and improve salt tolerance of tomato [2–6].Root colonization by AMF involves a series ofmorpho-physiological and biochemical events that are regulated by the interaction of plant and fungus,as well as by environ- mental factors.The physiological and biochemical mechanisms improving salt tolerance of AM tomato are still unclear,although the improved nutrition acquisition may be one of the reasons [4,7].Reactive oxygen species (ROS) such as superoxide radi- cal (O2 −),hydrogen peroxide (H2 O2 ),hydroxyl radical (OH) [8] and singlet oxygen (O1 −) [9] generated in plants during the salt stress.These cytotoxic activated oxygen species can seriously disrupt normal metabolism through oxidative damage to lipids [10,12],protein and nucleic acids [10–11].This lead to change in selective permeability of bio-membranes [13] and thereby membrane leakage and change in activity of enzymes bound to membrane occurred [14].
The induction of ROS-scavenging enzymes,such as SOD,POD,APX and CAT is the most common mechanism for detoxifying ROS synthesized during stress responses [15].In
bean (Phaseolus vulgaris) colonized by Glomus clarum,SOD and CAT were induced in roots at late stage of the symbiosis development under low P and the activities of SOD and CAT were evaluated [16].Higher levels of SOD activities were also observed in lettuce (Lactuca sativa) roots colonized by Glomus mosseae or Glomus deserticola under drought stress [17].Induc- tion of CAT had been observed in nodulated soybean (Glycine max Merr.) roots colonized by G.mosseae under watered but not drought stress conditions [18].However,the roles of these enzymes in AM tomato are poorly being understood especially under continuous salt stress condition.In this study,we detected the growth parameters,cell membrane osmosis and the activi- ties of SOD,POD,APX and CAT in roots of AM and non-AM tomato under 0.5,1% NaCl and normal condition.We evaluated the effects of these enzymes in ROS scavenging on the enhanced salt tolerance by AMF.We also tried to explain the salt tolerance improvement of AM tomato from the other side.”
机译的就别来丢人了

英语翻译1.IntroductionExtensive areas of the arid and semiarid regions have soils containing concentrations of soluble salts sufficient to adversely affect plant growth.One of the cost-effective strategies for cop- ing with salinity involves grow
看看下面的,
1.介绍
在干旱和半干旱地区广泛的领域有足够的土壤含有植物生长产生不利影响可溶性盐类浓度.对警察与盐度的ING成本效益的战略之一是农作物生长有一种内在的能力,容忍盐水条件[1].近年来,研究表明,丛枝菌根真菌(AMF)的可提高植物的生长和养分吸收,减少盐的条件下对番茄产量损失,提高耐盐番茄性[2-6].菌根根定植涉及一系列ofmorpho生理生化是由植物和真菌,以及与环境,心理因素之间的相互作用调节活动.生理生化机制的改进盐上午番茄宽容还不清楚,但收购可改善营养状况的原因之一[4,7].(ROS)的活性氧,如超氧拉迪,加州(02 - ),双氧水(过氧化氢),羟自由基(OH)[8]和单态氧(O1群 - )[9植物盐胁迫过程中生成的].这些抗癌活性氧物种可以严重破坏脂质氧化损伤[10,12],蛋白质和核酸的正常代谢[10-11].这导致改变生物膜[13],从而膜泄漏和酶活力的变化必然选择渗透膜发生[14].
对活性氧清除酶如超氧化物歧化酶,过氧化物酶,APX和CAT的,归纳是解毒应激反应过程中最常见的合成活性氧机制[15].在
菜豆(四季豆)由绣球clarum,SOD和CAT的诱导在殖民统治下低磷共生发展及SOD和CAT活性后期进行了评价[16]在根部.超氧化物歧化酶的活动高等教育水平也观察到生菜(莴苣)由殖民统治下的干旱荒漠之生长或球囊应力根[17].电感的CAT和灰已被观察到结瘤大豆(大豆的含量.)由G.mosseae的殖民统治下的根不浇水,但干旱胁迫条件[18].然而,这些酶在上午番茄的作用是不言而喻很差,特别是在连续盐胁迫的条件.在这项研究中,我们发现在0.5的生长参数,细胞膜渗透性和活动和联合在上午和非上午根的SOD,POD,APX和CAT的番茄,1%NaCl和正常状态.我们评价了关于由AMF的清除活性氧的耐盐性增强这些酶的影响.我们还试图解释对方的上午番茄耐盐改善.

介绍
广泛的地区的干旱、半干旱地区的可溶性盐类含量土壤含有足以影响植物生长。成本策略之一,与警察的盐度涉及种植农作物的固有能力宽容盐条件[1]。近年来,研究表明丛枝菌根真菌(“亚洲货币基金”),可以提高植物的生长发育和吸收养分,减少产量损失的情况下,提高盐番茄耐盐番茄[2-6]。由“根瘤菌根部定殖涉及一系列ofmorpho-physiological生化事件,是相互作用的真菌、植物以及...

全部展开

介绍
广泛的地区的干旱、半干旱地区的可溶性盐类含量土壤含有足以影响植物生长。成本策略之一,与警察的盐度涉及种植农作物的固有能力宽容盐条件[1]。近年来,研究表明丛枝菌根真菌(“亚洲货币基金”),可以提高植物的生长发育和吸收养分,减少产量损失的情况下,提高盐番茄耐盐番茄[2-6]。由“根瘤菌根部定殖涉及一系列ofmorpho-physiological生化事件,是相互作用的真菌、植物以及环境-心理因素。胰高糖素的生理和生化机制的完善是耐盐番茄仍不清楚,虽然改善营养获取可能的原因之一,(4)。活性氧簇ROS)如超拉-卡尔(O2−)、过氧化氢(H2 O2)、羟基自由基(哦)[8]和单重态氧(O1−)[9]中产生的植物在盐分胁迫。这些细胞会严重破坏活性氧物种的正常代谢脂质氧化损伤[10、12]、蛋白质和核酸(10-11]。这导致改变选择性的渗透性的bio-membranes[13],从而改变膜泄漏及酶活性的出现必然膜[14]。
ROS-scavenging的诱导酶活性、圆荚体等,APX和猫是最常见的机制,在压力反应合成解毒活性氧(15)。在
豆(菜豆数作为)殖民地clarum、SOD和猫临床上被诱导后期根系的共生发展低磷、超氧化物歧化酶、猫被评为[16]。高水平的草皮活动时,还发现在莴苣以6个殖民地mosseae)根临床上或临床上肉苁蓉干旱胁迫下[17]。Induc -对猫被观察到的nodulated大豆(甘氨酸马克斯、根mosseae殖民地).但没有浇灌干旱胁迫下条件[d]。然而,这些酶的作用是差的西红柿被理解的条件下连续盐胁迫。在本研究中,我们检测了生长参数、细胞膜渗透和计算中SOD,圆荚体-联系,在根的猫APX non-AM和番茄在0.5,1%的盐和正常状态。我们评估了这些酶的清除活性氧对提高耐盐被支持。我们也试图解释耐盐改良是西红柿从另一方

收起

在干旱和半干旱地区广泛的领域有足够的土壤含有植物生长产生不利影响可溶性盐类浓度。对警察与盐度的ING成本效益的战略之一是农作物生长有一种内在的能力,容忍盐水条件[1]。近年来,研究表明,丛枝菌根真菌(AMF)的可提高植物的生长和养分吸收,减少盐的条件下对番茄产量损失,提高耐盐番茄性[2-6]。菌根根定植涉及一系列ofmorpho生理生化是由植物和真菌,以及与环境,心理因素之间的相互作用调节活动。生...

全部展开

在干旱和半干旱地区广泛的领域有足够的土壤含有植物生长产生不利影响可溶性盐类浓度。对警察与盐度的ING成本效益的战略之一是农作物生长有一种内在的能力,容忍盐水条件[1]。近年来,研究表明,丛枝菌根真菌(AMF)的可提高植物的生长和养分吸收,减少盐的条件下对番茄产量损失,提高耐盐番茄性[2-6]。菌根根定植涉及一系列ofmorpho生理生化是由植物和真菌,以及与环境,心理因素之间的相互作用调节活动。生理生化机制的改进盐上午番茄宽容还不清楚,但收购可改善营养状况的原因之一[4,7]。 (ROS)的活性氧,如超氧拉迪,加州(02 - ),双氧水(过氧化氢),羟自由基(OH)[8]和单态氧(O1群 - )[9植物盐胁迫过程中生成的]。这些抗癌活性氧可以严重破坏脂质氧化损伤[10,12],蛋白质和核酸的正常代谢[10-11]。这导致改变生物膜[13],从而膜泄漏和酶活力的变化必然选择渗透膜发生[14]。
对活性氧清除酶如超氧化物歧化酶,过氧化物酶,APX和CAT的,归纳是解毒应激反应过程中最常见的合成活性氧机制[15]。在
菜豆(四季豆)由绣球clarum,SOD和CAT的诱导在殖民统治下低磷共生发展及SOD和CAT活性后期进行了评价[16]在根部。超氧化物歧化酶的活动高等教育水平也观察到生菜(莴苣)由殖民统治下的干旱荒漠之生长或球囊应力根[17]。电感的CAT和灰已被观察到结瘤大豆(大豆的含量。)由G. mosseae的殖民统治下的根不浇水,但干旱胁迫条件[18]。然而,这些酶在上午番茄的作用是不言而喻很差,特别是在连续盐胁迫的条件。在这项研究中,我们发现在0.5的生长参数,细胞膜渗透性和活动和联合在上午和非上午根的SOD,POD,APX和CAT的番茄,1%NaCl和正常状态。我们评价了关于由AMF的清除活性氧的耐盐性增强这些酶的影响。我们还试图解释对方的上午番茄耐盐改善。

收起

在干旱和半干旱地区广泛的领域有足够的土壤含有植物生长产生不利影响可溶性盐类浓度。对警察与盐度的ING成本效益的战略之一是农作物生长有一种内在的能力,容忍盐水条件[1]。近年来,
研究表明,丛枝菌根真菌(AMF)的可提高植物的生长和养分吸收,减少盐的条件下对番茄产量损失,提高耐盐番茄性[2-6]。菌根根定植涉及一系列ofmorpho生理和生物化学
这是由植物和真菌,以及与环境,心理因...

全部展开

在干旱和半干旱地区广泛的领域有足够的土壤含有植物生长产生不利影响可溶性盐类浓度。对警察与盐度的ING成本效益的战略之一是农作物生长有一种内在的能力,容忍盐水条件[1]。近年来,
研究表明,丛枝菌根真菌(AMF)的可提高植物的生长和养分吸收,减少盐的条件下对番茄产量损失,提高耐盐番茄性[2-6]。菌根根定植涉及一系列ofmorpho生理和生物化学
这是由植物和真菌,以及与环境,心理因素之间的相互作用调节iCal事件。生理生化机制的改进盐上午番茄宽容还不清楚,虽然改善营养收购可能是第1
é原因[4,7]。 (ROS)的活性氧,如超氧拉迪,加州(02 - ),双氧水(过氧化氢),羟自由基(OH)[8]和单态氧(O1群 - )[9植物盐胁迫过程中生成的]。这些抗癌活性氧物种可以严重破坏脂质氧化损伤[10,12],蛋白质和核酸的正常代谢[10-11]。这导致改变生物膜[13],从而膜泄漏和酶活力的变化必然选择渗透膜发生[14]。
对活性氧清除酶如超氧化物歧化酶,过氧化物酶,APX和CAT的,归纳是解毒应激反应过程中最常见的合成活性氧机制[15]。在
菜豆(四季豆)由绣球clarum,SOD和CAT的诱导在殖民统治下低磷共生发展及SOD和CAT活性后期进行了评价[16]在根部。超氧化物歧化酶的活动高等教育水平也观察到生菜(莴苣)由殖民统治下的干旱荒漠之生长或球囊应力根[17]。
电感的CAT和灰已被观察到结瘤大豆(大豆的含量。)由G. mosseae的殖民统治下的根不浇水,但干旱胁迫条件[18]。然而,这些酶在上午番茄的作用是不言而喻很差,特别是在连续盐胁迫的条件。本研究中,我们发现了生长参数,细胞膜渗透性和爱科特
六,超氧化物歧化酶,过氧化物酶,APX和CAT的关系在上午和非上午根的0.5番茄,1%NaCl和正常状态。我们评价了关于由AMF的清除活性氧的耐盐性增强这些酶的影响。我们还试图解释上午耐盐番茄和其他改善

收起

1. Introduction
Extensive areas of the arid and semiarid regions have soils containing concentrations of soluble salts sufficient to adversely affect plant growth. One of the cost-effective stra...

全部展开

1. Introduction
Extensive areas of the arid and semiarid regions have soils containing concentrations of soluble salts sufficient to adversely affect plant growth. One of the cost-effective strategies for coping with salinity involves growing crops that have an inherent ability to tolerate saline conditions [1]. In recent years, studies indicated that arbuscular mycorrhizal fungi (AMF) can increase plant growth and uptake of nutrients, decrease yield losses of tomato under saline conditions and improve salt tolerance of tomato [2–6]. Root colonization by AMF involves a series of morpho-physiological and biochemical events that are regulated by the interaction of plant and fungus, as well as by environmental factors.
干旱与半干旱区域的广大面积含有对农作物足以造成不利影响的高浓度溶性盐。对付这种含盐地的低成本策略就是种植拥有潜在能力容忍这种盐性条件的农作物[1]。近几年,研究成果显示丛枝菌根真菌(AMF)在盐性条件下,可以提高番茄的生长及养分吸收,降低产量损失,并增进番茄的耐盐性[2-6]。AMF的根部定殖涉及一系列由植物与真菌相互作用以及环境因素调节的形态生理与生化的变化。
The physiological and biochemical mechanisms improving salt tolerance of AM tomato are still unclear, although the improved nutrition acquisition may be one of the reasons [4,7]. Reactive oxygen species (ROS) such as superoxide radical (O2 −), hydrogen peroxide (H2 O2 ), hydroxyl radical (OH) [8] and singlet oxygen (O1 −) [9] generated in plants during the salt stress. These cytotoxic activated oxygen species can seriously disrupt normal metabolism through oxidative damage to lipids [10,12], protein and nucleic acids [10–11]. This lead to change in selective permeability of bio-membranes [13] and thereby membrane leakage and change in activity of enzymes bound to membrane occurred [14].
对于增进丛枝菌根(AM)番茄耐盐性的生理生化机制目前还不清楚,尽管养分吸取的改善可能是其中一个原因[4-7]。在盐分胁迫过程所产生的活性氧组分(ROS)如超氧游离基(O2 −)、过氧化氢(H2 O2 )、羟自由基(OH) [8]及单线态氧(O1 −) [9],这些细胞毒活化的氧组分,通过对脂质[10,12],、蛋白质及核酸[10–11]的氧化损伤,可严重破坏正常的代谢作用。这导致生物膜选择通透性的改变[13], 从而造成膜渗漏以及与膜结合的酶产生活性变化[14]。
The induction of ROS-scavenging enzymes, such as SOD, POD, APX and CAT is the most common mechanism for detoxifying ROS synthesized during stress responses [15]. In bean (Phaseolus vulgaris) colonized by Glomus clarum, SOD and CAT were induced in roots at late stage of the symbiosis development under low P and the activities of SOD and CAT were evaluated [16]. Higher levels of SOD activities were also observed in lettuce (Lactuca sativa) roots colonized by Glomus mosseae or Glomus deserticola under drought stress [17].
对于胁迫反应时所合成的活性氧组分的去毒处理,最普遍的机制是诱发活性氧清除酶,如超氧化物岐化酶(SOD)、过氧化物酶(POD)、抗坏血酸-过氧化物酶(APX)及过氧化氢酶(CAT)[15]。AM真菌Glomus clarum (明球囊霉)定殖的菜豆(Phaseolus vulgaris),在低磷处理下的共生发展后期在其根系诱发SOD和CAT,并对SOD和CAT的活性进行评估[16]。同时,也对在干旱胁迫下被AM真菌Glomus mosseae(摩西球囊霉) 或 Glomus deserticola(沙漠球囊霉)定殖的莴苣根系的较高SOD活性进行观察[17]。
Induction of CAT had been observed in nodulated soybean (Glycine max Merr.) roots colonized by G. mosseae under watered but not drought stress conditions [18]. However, the roles of these enzymes in AM tomato are poorly being understood especially under continuous salt stress condition. In this study, we detected the growth parameters, cell membrane osmosis and the activities of SOD, POD, APX and CAT in roots of AM and non-AM tomato under 0.5, 1% NaCl and normal condition. We evaluated the effects of these enzymes in ROS scavenging on the enhanced salt tolerance by AMF. We also tried to explain the salt tolerance improvement of AM tomato from the other side.”
在水胁迫而不是干旱胁迫下,观察到摩西球囊霉定殖的结瘤大豆(Glycine max Merr.)根部有CAT的诱发[18]。然而,对AM番茄里这些酶的各种角色却了解不多,特别是在持续受盐胁迫的条件下。在本研究我们针对低于0.5,盐份1%及在正常状态的AM及非AM番茄的生长发育参数、细胞膜渗透性以及在根部的SOD, POD, APX 与CAT活性进行检测。我们对这些经AMF加强耐盐性的活性氧清除酶的效果进行评估。我们也尝试从另一角度解释AM番茄耐盐性的改进。

收起