已知:如图,在等腰梯形ABCD中,AD平行于BC,AB=CD,角DBC=45度,翻折梯形ABCD,使得点B与点D重合,折痕分别交AB、BC于点F、E.若AD=2,BC=8,求DE的长.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:41:24
已知:如图,在等腰梯形ABCD中,AD平行于BC,AB=CD,角DBC=45度,翻折梯形ABCD,使得点B与点D重合,折痕分别交AB、BC于点F、E.若AD=2,BC=8,求DE的长.
已知:如图,在等腰梯形ABCD中,AD平行于BC,AB=CD,角DBC=45度,翻折梯形ABCD,使得点B与点D重合,折痕分别交AB、BC于点F、E.若AD=2,BC=8,求DE的长.
已知:如图,在等腰梯形ABCD中,AD平行于BC,AB=CD,角DBC=45度,翻折梯形ABCD,使得点B与点D重合,折痕分别交AB、BC于点F、E.若AD=2,BC=8,求DE的长.
∵EF是点B、D的对称轴,
∴△BFE≌△DFE,
∴DE=BE.
∵在△BDE中,DE=BE,∠DBE=45°,
∴∠BDE=∠DBE=45°.
∴∠DEB=90°,
∴DE⊥BC.
在等腰梯形ABCD中,AD=2,BC=8,
过A作AG⊥BC于G,
∴四边形AGED是矩形.
∴AD=GE=2
∵Rt△ABG≌Rt△DCE,)∵EF是点B、D的对称轴,
∴△BFE≌△DFE,
∴DE=BE.
∵在△BDE中,DE=BE,∠DBE=45°,
∴∠BDE=∠DBE=45°.
∴∠DEB=90°,
∴DE⊥BC.
在等腰梯形ABCD中,AD=2,BC=8,
过A作AG⊥BC于G,
∴四边形AGED是矩形.
∴AD=GE=2
∵Rt△ABG≌Rt△DCE,
∴BG=EC=3.
∴BE=5
∴BG=EC=3.
∴BE=5
根据题意可得,三角形fde和三角形fbe全等,且角dbe=角bde=45度,所以角bed等于90度,为直角,即de垂直bc,作ao垂直bc于o,得eo=2,又因为abcd为等腰梯形,所以bo=ec=3,所以de=be=5