怎么样证明f{x}=x{1-2\2x的平方+1}的奇偶性?

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/19 11:38:36

怎么样证明f{x}=x{1-2\2x的平方+1}的奇偶性?
怎么样证明f{x}=x{1-2\2x的平方+1}的奇偶性?

怎么样证明f{x}=x{1-2\2x的平方+1}的奇偶性?
因f(-x)=-x{1-2/[2(-x)²+1]}
=-x[1-2/(2x²+1)]
=-f(x)
所以f(x)为奇函数

奇,把X换成-x看看是什么。f(-x)=f(x)是偶,f(-x)=-f(x)是奇

证:f(-x)=-x{1-2/[2(-x)²+1]}
=-x[1-2/(2x²+1)]
=-f(x)
故f{x}=x{1-2\2x的平方+1}为奇函数