高一物理公式归类、

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/06 19:54:48

高一物理公式归类、
高一物理公式归类、

高一物理公式归类、
力的种类:(性质力) 说明:凡矢量式中用“+”号都为合成符号
重力: G = mg 弹力:F= Kx 滑动摩擦力:F滑= mN 静摩擦力: O£ f静£ fm
浮力: F浮= rgV排 压力: F= PS = rghs
万有引力: F引=G 电场力: F电=q E =q 库仑力: F=K
磁场力:(1)、安培力 : 磁场对电流的作用力. 公式: F= BIL (B^I) 方向:左手定则
(2)、洛仑兹力:磁场对运动电荷的作用力. 公式: f=BqV (B^V) 方向:左手定则
分子力:分子间的引力和斥力同时存在,都随距离的增大而减小,随距离的减小而增大,但斥力变化得快.
核力:只有相邻的核子之间才有核力,是一种短程强力.
运动分类:(各种运动产生的力学和运动学条件、及运动规律)重点难点
高考中常出现多种运动形式的组合 匀速直线运动 F合=0 V0≠0 静止
匀变速直线运动:初速为零,初速不为零,匀变速直曲线运动(决于F合与V0的方向关系) 但 F合= 恒力
只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等
圆周运动:竖直平面内的圆周运动(最低点和最高点);匀速圆周运动(是什么力提供作向心力)
简谐运动;单摆运动; 波动及共振;分子热运动;类平抛运动;带电粒子在f洛作用下的匀速圆周运动
物理解题的依据:力的公式 各物理量的定义 各种运动规律的公式 物理中的定理定律及数学几何关系
ú F1-F2 ú £ F£ ∣F1 +F2∣、三力平衡:F3=F1 +F2
非平行的三个力作用于物体而平衡,则这三个力一定共点,按比例可平移为一个封闭的矢量三角形
多个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力的合力一定等值反向
匀变速直线运动:基本规律: Vt = V0 + a t S = vo t +a t2几个重要推论:
(1) 推论:Vt2 -V02 = 2as (匀加速直线运动:a为正值 匀减速直线运动:a为正值)
(2) A B段中间时刻的即时速度: (3) AB段位移中点的即时速度:
Vt/ 2 ===== VN £ Vs/2 =
(4) S第t秒 = St-S t-1= (vo t +a t2) -[vo( t-1) +a (t-1)2]= V0 + a (t-)
(5) 初速为零的匀加速直线运动规律
①在1s末 、2s末、3s末……ns末的速度比为1:2:3……n;
②在1s 、2s、3s……ns内的位移之比为12:22:32……n2;
③在第1s 内、第 2s内、第3s内……第ns内的位移之比为1:3:5……(2n-1);
④从静止开始通过连续相等位移所用时间之比为1::……(
⑤通过连续相等位移末速度比为1::……
(6) 匀减速直线运动至停可等效认为反方向初速为零的匀加速直线运动.
(7) 通过打点计时器在纸带上打点(或照像法记录在底片上)来研究物体的运动规律
初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数;
中时刻的即时速度等于这段的平均速度
⑴是判断物体是否作匀变速直线运动的方法.Ds = aT2
⑵求的方法 VN===
⑶求a方法 ① Ds = aT2 ②一=3 aT2 ③ Sm一Sn=( m-n) aT2
④画出图线根据各计数点的速度,图线的斜率等于a;
识图方法:一轴二线三斜率四面积五截距六交点
注意:a纸带的记录方式,相邻记数间的距离还是各点距第一个记数点的距离.
b时间间隔与选计数点的方式有关(50Hz,打点周期0.02s,常以打点的5个间隔作为一个记时单位)
c注意单位,找点计时器打的点和人为选取的计数点
竖直上抛运动:(速度和时间的对称)
上升过程匀减速直线运动,下落过程匀加速直线运动.全过程是初速度为V0加速度为-g的匀减速直线运动.
(1)上升最大高度:H = (2)上升的时间:t= (5)从抛出到落回原位置的时间:t =
(3)上升、下落经过同一位置时的加速度相同,而速度等值反向 (4)上升、下落经过同一段位移的时间相等.
(6)适用全过程S = Vo t -g t2 ; Vt = Vo-g t ; Vt2-Vo2 = -2gS (S、Vt的正、负号的理解)
几个典型的运动模型:追及和碰撞、平抛、竖直上抛、匀速圆周运动等及类似的运动
牛二:F合 = ma 理(1)矢量性 (2)瞬时性 (3)独立性 (4)同体性 (5)同系性 (6)同单位制
万有引力及应用:与牛二及运动学公式
1思路:卫星或天体的运动看成匀速圆周运动, F心=F万 (类似原子模型)
2方法:F引=G= F心= ma心= m2 R= mm4n2 R
地面附近:G= mg GM=gR2 (黄金代换式)
轨道上正常转:G= m 【讨论(v或EK)与r关系,r最小时为地球半径,
v第一宇宙=7.9km/s (最大的运行速度、最小的发射速度);T最小=84.8min=1.4h】
G=mr= m M= T2=
(M=V球=r3) s球面=4r2 s=r2 (光的垂直有效面接收,球体推进辐射) s球冠=2Rh
3理解近地卫星:来历、意义 万有引力≈重力=向心力、 r最小时为地球半径、
最大的运行速度=v第一宇宙=7.9km/s (最小的发射速度);T最小=84.8min=1.4h
4同步卫星几个一定:三颗可实现全球通讯(南北极有盲区)
轨道为赤道平面 T=24h=86400s 离地高h=3.56x104km(为地球半径的5.6倍)
V=3.08km/s﹤V第一宇宙=7.9km/s w=15o/h(地理上时区) a=0.23m/s2
5运行速度与发射速度的区别
6卫星的能量:r增 v减小(EK减小应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s, 地球表面半径6.4x103km 表面重力加速度g=9.8 m/s2 月球公转周期30天
典型物理模型:
连接体是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组.
解决这类问题的基本方法是整体法和隔离法.
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体考虑分受力情况,对整体用牛二定律列方程
隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法.
两木块的相互作用力N=
讨论:①F1≠0;F2=0
N= (与运动方向和接触面是否光滑无关)
保持相对静止
② F1≠0;F2=0 N=
F=
F1>F2 m1>m2 N1N5对6=(m为第6个以后的质量) 第12对13的作用力 N12对13=
水流星模型(竖直平面内的圆周运动)
竖直平面内的圆周运动是典型的变速圆周运动研究物体通过最高点和最低点的情况,并且经常出现临界状态.(圆周运动实例)①火车转弯 ②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力.
④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等).
⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的)
(1)火车转弯:设火车弯道处内外轨高度差为h,内外轨间距L,转弯半径R.由于外轨略高于内轨,使得火车所受重力和支持力的合力F合提供向心力.

①当火车行驶速率V等于V0时,F合=F向,内外轨道对轮缘都没有侧压力
②当火车行驶V大于V0时,F合③当火车行驶速率V小于V0时,F合>F向,内轨道对轮缘有侧压力,F合-N'=mv2/R
即当火车转弯时行驶速率不等于V0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道.
(2)无支承的小球,在竖直平面内作圆周运动过最高点情况:
① 临界条件:由mg+T=mv2/L知,小球速度越小,绳拉力或环压力T越小,但T的最小值只能为零,此时小球以重力为向心力,恰能通过最高点.即mg=mv临2/R
结论:绳子和轨道对小球没有力的作用(可理解为恰好转过或恰好转不过的速度),只有重力作向心力,临界速度V临=
②能过最高点条件:V≥V临(当V≥V临时,绳、轨道对球分别产生拉力、压力)
③不能过最高点条件:V最高点状态: mg+T1=mv高2/L (临界条件T1=0, 临界速度V临=, V≥V临才能通过)
最低点状态: T2- mg = mv低2/L 高到低过程机械能守恒: 1/2mv低2= 1/2mv高2+ mgh
T2- T1=6mg(g可看为等效加速度)
半圆:mgR=1/2mv2 T-mg=mv2/R T=3mg
(3)有支承的小球,在竖直平面作圆周运动过最高点情况:
①临界条件:杆和环对小球有支持力的作用 当V=0时,N=mg(可理解为小球恰好转过或恰好转不过最高点)


恰好过最高点时,此时从高到低过程 mg2R=1/2mv2 低点:T-mg=mv2/R T=5mg
注意物理圆与几何圆的最高点、最低点的区别
(以上规律适用于物理圆,不过最高点,最低点, g都应看成等效的)
2.解决匀速圆周运动问题的一般方法
(1)明确研究对象,必要时将它从转动系统中隔离出来.
(2)找出物体圆周运动的轨道平面,从中找出圆心和半径.
(3)分析物体受力情况,千万别臆想出一个向心力来.
(4)建立直角坐标系(以指向圆心方向为x轴正方向)将力正交分解.
(5)
3.离心运动
在向心力公式Fn=mv2/R中,Fn是物体所受合外力所能提供的向心力,mv2/R是物体作圆周运动所需要的向心力.当提供的向心力等于所需要的向心力时,物体将作圆周运动;若提供的向心力消失或小于所需要的向心力时,物体将做逐渐远离圆心的运动,即离心运动.其中提供的向心力消失时,物体将沿切线飞去,离圆心越来越远;提供的向心力小于所需要的向心力时,物体不会沿切线飞去,但沿切线和圆周之间的某条曲线运动,逐渐远离圆心.
斜面模型
斜面固定:物体在斜面上情况由倾角和摩擦因素决定
=tg物体沿斜面匀速下滑或静止 > tg物体静止于斜面
< tg物体沿斜面加速下滑a=g(sin一cos) 搞清物体对斜面压力为零的临界条件
超重失重模型
系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量ay)
向上超重(加速向上或减速向下);向下失重(加速向下或减速上升)
难点:一个物体的运动导致系统重心的运动

1到2到3过程中 绳剪断后台称示数
(13除外)超重状态 系统重心向下加速

斜面对地面的压力? 铁木球的运动
地面对斜面摩擦力? 用同体积的水去补充 导致系统重心如何运动
轻绳、杆模型
绳只能承受拉力,杆能承受沿杆方向的拉、压、横向及任意方向的力
杆对球的作用力由运动情况决定
只有=arctg(a/g)时才沿杆方向 最高点时杆对球的作用力
最低点时的速度?,杆的拉力?
换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失,再下摆机械能守恒
假设单B下摆,最低点的速度VB= mgR=
整体下摆2mgR=mg+
= ; => VB=
所以AB杆对B做正功,AB杆对A做负功
若 V0< ,运动情况为先平抛,绳拉直沿方向的速度消失
即是有能量损失,绳拉紧后沿圆周下落.不能够整个过程用机械能守恒

力学、电学、光学。你按着这个思路分吧,其实点穴和光学都比较简单,力学比较复杂。好像高一就是一般的简单力学哈

百度文库里面搜吧,大大的有。