氨水和NAHCO3那个碱性强急 最好说明一下各自的PH值

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/30 03:44:10

氨水和NAHCO3那个碱性强急 最好说明一下各自的PH值
氨水和NAHCO3那个碱性强
急 最好说明一下各自的PH值

氨水和NAHCO3那个碱性强急 最好说明一下各自的PH值
这个要看各自的浓度啊,试想:0.00000000000000000000000···01mol/L的氨水和10mol/L的NaHCO3溶液,很明显是后者碱性强.
但注意:NH3·H2O与NaHCO3的碱性强弱:NH3·H2O>NaHCO3

CAS: 144-55-8
分子式: NaHCO3
分子量: 84.01
中文名称: 碳酸氢钠 重碳酸钠 小苏打
英文名称: Carbonic acid monosodium salt
sodium bicarbonate
baking soda
bicarbonate de sodium
bi...

全部展开

CAS: 144-55-8
分子式: NaHCO3
分子量: 84.01
中文名称: 碳酸氢钠 重碳酸钠 小苏打
英文名称: Carbonic acid monosodium salt
sodium bicarbonate
baking soda
bicarbonate de sodium
bicarbonate of soda
是指有别于工业用碱的纯碱(碳酸钠)和小苏打(碳酸氢钠),小苏打是由纯碱的溶液或结晶吸收二氧化碳之后的制成品,二者本质上没有区别。所以,小苏打在有些地方也被称作食用碱(粉末状)。性质
白色粉末,或不透明单斜晶系细微结晶。比重2.159。无臭、味咸,可溶于水,微溶于乙醇。其水溶液因水解而呈微碱性,受热易分解,在65℃以上迅速分解,在270℃时完全失去二氧化碳,在干燥空气中无变化,在潮湿空气中缓慢分解。用途
用作食品工作的发酵剂、汽水和冷饮中二氧化碳的发生剂、黄油的保存剂。可直接作为制药工业的原料。还可用于电影制片、鞣革、选矿、冶炼、金属热处理,以及用于纤维、橡胶工业等。同时用作羊毛的洗涤剂、泡沫灭火剂,以及用于农业浸种等。 食品工业中一种应用最广泛的疏松剂,用于生产饼干、糕点、馒头、面包等医药用途
本品为弱碱,为吸收性抗酸药。内服后,能迅速中和胃酸,作用迅速,且维持短暂,并有产生二氧化碳等多种缺点。作为抗酸药不宜单用,常与碳酸钙或氧化镁等一起组成西比氏散用。此外,本品能碱化尿液,与碘胺药同服,以防磺胺在尿中结晶析出;与链霉素合用可增强泌尿道抗菌作用。静脉给药用经纠正酸血症。用5%100-200毫升滴注,小儿每公斤体重5毫升。妇科用于霉菌性阴道炎,用2%-4%溶液坐浴,每晚一次,每次500-1000毫升,连用7日。外用滴耳剂软化盯聍(3%溶液滴耳,每日3-4次)。 [剂型、用法和剂量] 片剂:每片0.3克、0.5克。口服:每次0.3-1克,每日3次。小儿,每次0.1-1克,每日3次。注射剂:10毫升支含药0.5克;100毫升支含药5克。 本药品在非处方药中,仅为片剂和滴剂。制法及工艺
1、 气相碳化法 将碳酸钠溶液,在碳化塔中通过二氧化碳碳化后,再经分离干燥,即得成品。
Na2CO3+ CO2+ H2O→2NaHCO3
2、 气固相碳化法 将碳酸钠置于反应床上,并用水拌好,由下部吹以二氧化碳,碳化后经干燥、粉碎和包装,即得成品。
Na2CO3+ CO2+ H2O→2NaHCO3化学性质
1.与HCl反应:NaHCO3+HCl==NaCl+H2O+CO2↑
2.与NaOH反应:NaHCO3+NaOH==Na2CO3+H2O
3.与AlCl3发生双水解反应:3NaHCO3+AlCl3==Al(OH)3↓+3CO2↑+3NaCl
★不同量的碱与NaHCO3反应:
NaHCO3+Ca(OH)2(过量)==CaCO3↓+NaOH+H2O
2NaHCO3+Ca(OH)2(少量)==Na2CO3+CaCO3↓+2H2O
4.加热:2NaHCO3==(加热)Na2CO3+H2O+CO2↑热力学函数(298.15K,100kPa)
状态:s[1]
标准摩尔生成热ΔfHmθ(kJ·mol^-1):-950.8
标准摩尔生成吉布斯自由能ΔfGmθ(kJ·mol^-1):-851.0
标准熵Smθ(J·mol^-1·K^-1):101.7
氨 氨: [ān] [ㄢˉ]
郑码:MYWZ,U:6C28,GBK:B0B1 五笔:RNPV
笔画数:10,部首:气,笔顺编号:3115445531
参考词汇:
ammonia
化学式:NH3

三维模型一、结构:氨分子为三角锥形分子,是极性分子。N原子以sp3杂化轨道成键。
二、物理性质:氨气通常情况下是有刺激性气味的无色气体,极易溶于水,易液化,液氨可作致冷剂。以700:1的溶解度溶于水。
三、主要化学性质:
1、NH3遇HCl气体有白烟产生,可与CL2反应。
2、氨水可腐蚀许多金属,一般若用铁桶装氨水,铁桶应内涂沥青。
3、氨的催化氧化是放热反应,产物是NO,是工业制硝酸的重要反应,NH3也可以被氧化成N2。
4、NH3能使湿润的红色石蕊试纸变蓝。
四、主要用途:NH3用于制氮肥(尿素、碳铵等)、HNO3、铵盐、纯碱,还用于制合成纤维、塑料、染料等。
五、制法:
1.合成氨的工艺流程
(1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。
(2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。
① 一氧化碳变换过程
在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下:
CO+H2O→H2+CO2 ΔH =-41.2kJ/mol
由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。
② 脱硫脱碳过程
各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。
粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。
一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。 4
③ 气体精制过程
经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。
目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(<-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm3/m3以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。甲烷化反应如下:
CO+3H2→CH4+H2O ΔH=-206.2kJ/mol
CO2+4H2→CH4+2H2O ΔH=-165.1kJ/mol
(3)氨合成 将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下:
N2+3H2→2NH3(g) ΔH=-92.4kJ/mol
2.合成氨的催化机理
热力学计算表明,低温、高压对合成氨反应是有利的,但无催化剂时,反应的活化能很高,反应几乎不发生。当采用铁催化剂时,由于改变了反应历程,降低了反应的活化能,使反应以显著的速率进行。目前认为,合成氨反应的一种可能机理,首先是氮分子在铁催化剂表面上进行化学吸附,使氮原子间的化学键减弱。接着是化学吸附的氢原子不断地跟表面上的氮分子作用,在催化剂表面上逐步生成—NH、—NH2和NH3,最后氨分子在表面上脱吸而生成气态的氨。上述反应途径可简单地表示为:
xFe + N2→FexN
FexN +〔H〕吸→FexNH
FexNH +〔H〕吸→FexNH2
FexNH2 +〔H〕吸FexNH3→xFe+NH3
在无催化剂时,氨的合成反应的活化能很高,大约335 kJ/mol。加入铁催化剂后,反应以生成氮化物和氮氢化物两个阶段进行。第一阶段的反应活化能为126 kJ/mol~167 kJ/mol,第二阶段的反应活化能为13 kJ/mol。由于反应途径的改变(生成不稳定的中间化合物),降低了反应的活化能,因而反应速率加快了。
3.催化剂的中毒
催化剂的催化能力一般称为催化活性。有人认为:由于催化剂在反应前后的化学性质和质量不变,一旦制成一批催化剂之后,便可以永远使用下去。实际上许多催化剂在使用过程中,其活性从小到大,逐渐达到正常水平,这就是催化剂的成熟期。接着,催化剂活性在一段时间里保持稳定,然后再下降,一直到衰老而不能再使用。活性保持稳定的时间即为催化剂的寿命,其长短因催化剂的制备方法和使用条件而异。
催化剂在稳定活性期间,往往因接触少量的杂质而使活性明显下降甚至被破坏,这种现象称为催化剂的中毒。一般认为是由于催化剂表面的活性中心被杂质占据而引起中毒。中毒分为暂时性中毒和永久性中毒两种。例如,对于合成氨反应中的铁催化剂,O2、CO、CO2和水蒸气等都能使催化剂中毒。但利用纯净的氢、氮混合气体通过中毒的催化剂时,催化剂的活性又能恢复,因此这种中毒是暂时性中毒。相反,含P、S、As的化合物则可使铁催化剂永久性中毒。催化剂中毒后,往往完全失去活性,这时即使再用纯净的氢、氮混合气体处理,活性也很难恢复。催化剂中毒会严重影响生产的正常进行。工业上为了防止催化剂中毒,要把反应物原料加以净化,以除去毒物,这样就要增加设备,提高成本。因此,研制具有较强抗毒能力的新型催化剂,是一个重要的课题。
4.我国合成氨工业的发展情况
解放前我国只有两家规模不大的合成氨厂,解放后合成氨工业有了迅速发展。1949年全国氮肥产量仅0.6万吨,而1982年达到1021.9万吨,成为世界上产量最高的国家之一。
近几年来,我国引进了一批年产30万吨氮肥的大型化肥厂设备。我国自行设计和建造的上海吴泾化工厂也是年产30万吨氮肥的大型化肥厂。这些化肥厂以天然气、石油、炼油气等为原料,生产中能量损耗低、产量高,技术和设备都很先进。
5.化学模拟生物固氮的研究
目前,化学模拟生物固氮的重要研究课题之一,是固氮酶活性中心结构的研究。固氮酶由铁蛋白和钼铁蛋白这两种含过渡金属的蛋白质组合而成。铁蛋白主要起着电子传递输送的作用,而含二个钼原子和二三十个铁和硫原子的钼铁蛋白是络合N2或其他反应物(底物)分子,并进行反应的活性中心所在之处。关于活性中心的结构有多种看法,目前尚无定论。从各种底物结合物活化和还原加氢试验来看,含双钼核的活性中心较为合理。我国有两个研究组于1973—1974年间,不约而同地提出了含钼铁的三核、四核活性中心模型,能较好地解释固氮酶的一系列性能,但其结构细节还有待根据新的实验结果精确化。
国际上有关的研究成果认为,温和条件下的固氮作用一般包含以下三个环节:
①络合过程。它是用某些过渡金属的有机络合物去络合N2,使它的化学键削弱;②还原过程。它是用化学还原剂或其他还原方法输送电子给被络合的N2,来拆开N2中的N—N键;③加氢过程。它是提供H+来和负价的N结合,生成NH3。
目前,化学模拟生物固氮工作的一个主要困难是,N2络合了但基本上没有活化,或络合活化了,但活化得很不够。所以,稳定的双氮基络合物一般在温和条件下通过化学还原剂的作用只能析出N2,从不稳定的双氮络合物还原制出的NH3的量相当微少。因此迫切需要从理论上深入分析,以便找出突破的途径。
固氮酶的生物化学和化学模拟工作已取得一定的进展,这必将有力地推动络合催化的研究,特别是对寻找催化效率高的合成氨催化剂,将是一个有力的促进。
前者可食用,后者不能,明显是氨水

收起

明显氨水

CAS: 144-55-8
分子式: NaHCO3
分子量: 84.01
中文名称: 碳酸氢钠 重碳酸钠 小苏打
英文名称: Carbonic acid monosodium salt
sodium bicarbonate
baking soda
bicarbonate de sodium
bi...

全部展开

CAS: 144-55-8
分子式: NaHCO3
分子量: 84.01
中文名称: 碳酸氢钠 重碳酸钠 小苏打
英文名称: Carbonic acid monosodium salt
sodium bicarbonate
baking soda
bicarbonate de sodium
bicarbonate of soda
是指有别于工业用碱的纯碱(碳酸钠)和小苏打(碳酸氢钠),小苏打是由纯碱的溶液或结晶吸收二氧化碳之后的制成品,二者本质上没有区别。所以,小苏打在有些地方也被称作食用碱(粉末状)。性质
白色粉末,或不透明单斜晶系细微结晶。比重2.159。无臭、味咸,可溶于水,微溶于乙醇。其水溶液因水解而呈微碱性,受热易分解,在65℃以上迅速分解,在270℃时完全失去二氧化碳,在干燥空气中无变化,在潮湿空气中缓慢分解。用途
用作食品工作的发酵剂、汽水和冷饮中二氧化碳的发生剂、黄油的保存剂。可直接作为制药工业的原料。还可用于电影制片、鞣革、选矿、冶炼、金属热处理,以及用于纤维、橡胶工业等。同时用作羊毛的洗涤剂、泡沫灭火剂,以及用于农业浸种等。 食品工业中一种应用最广泛的疏松剂,用于生产饼干、糕点、馒头、面包等医药用途
本品为弱碱,为吸收性抗酸药。内服后,能迅速中和胃酸,作用迅速,且维持短暂,并有产生二氧化碳等多种缺点。作为抗酸药不宜单用,常与碳酸钙或氧化镁等一起组成西比氏散用。此外,本品能碱化尿液,与碘胺药同服,以防磺胺在尿中结晶析出;与链霉素合用可增强泌尿道抗菌作用。静脉给药用经纠正酸血症。用5%100-200毫升滴注,小儿每公斤体重5毫升。妇科用于霉菌性阴道炎,用2%-4%溶液坐浴,每晚一次,每次500-1000毫升,连用7日。外用滴耳剂软化盯聍(3%溶液滴耳,每日3-4次)。 [剂型、用法和剂量] 片剂:每片0.3克、0.5克。口服:每次0.3-1克,每日3次。小儿,每次0.1-1克,每日3次。注射剂:10毫升支含药0.5克;100毫升支含药5克。 本药品在非处方药中,仅为片剂和滴剂。制法及工艺
1、 气相碳化法 将碳酸钠溶液,在碳化塔中通过二氧化碳碳化后,再经分离干燥,即得成品。
Na2CO3+ CO2+ H2O→2NaHCO3
2、 气固相碳化法 将碳酸钠置于反应床上,并用水拌好,由下部吹以二氧化碳,碳化后经干燥、粉碎和包装,即得成品。
Na2CO3+ CO2+ H2O→2NaHCO3化学性质
1.与HCl反应:NaHCO3+HCl==NaCl+H2O+CO2↑
2.与NaOH反应:NaHCO3+NaOH==Na2CO3+H2O
3.与AlCl3发生双水解反应:3NaHCO3+AlCl3==Al(OH)3↓+3CO2↑+3NaCl
★不同量的碱与NaHCO3反应:
NaHCO3+Ca(OH)2(过量)==CaCO3↓+NaOH+H2O
2NaHCO3+Ca(OH)2(少量)==Na2CO3+CaCO3↓+2H2O
4.加热:2NaHCO3==(加热)Na2CO3+H2O+CO2↑热力学函数(298.15K,100kPa)
状态:s[1]
标准摩尔生成热ΔfHmθ(kJ·mol^-1):-950.8
标准摩尔生成吉布斯自由能ΔfGmθ(kJ·mol^-1):-851.0
标准熵Smθ(J·mol^-1·K^-1):101.7
氨 氨: [ān] [ㄢˉ]
郑码:MYWZ,U:6C28,GBK:B0B1 五笔:RNPV
笔画数:10,部首:气,笔顺编号:3115445531
参考词汇:
ammonia
化学式:NH3

三维模型一、结构:氨分子为三角锥形分子,是极性分子。N原子以sp3杂化轨道成键。
二、物理性质:氨气通常情况下是有刺激性气味的无色气体,极易溶于水,易液化,液氨可作致冷剂。以700:1的溶解度溶于水。
三、主要化学性质:
1、NH3遇HCl气体有白烟产生,可与CL2反应。
2、氨水可腐蚀许多金属,一般若用铁桶装氨水,铁桶应内涂沥青。
3、氨的催化氧化是放热反应,产物是NO,是工业制硝酸的重要反应,NH3也可以被氧化成N2。
4、NH3能使湿润的红色石蕊试纸变蓝。
四、主要用途:NH3用于制氮肥(尿素、碳铵等)、HNO3、铵盐、纯碱,还用于制合成纤维、塑料、染料等。
五、制法:
1.合成氨的工艺流程
(1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。
(2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。
① 一氧化碳变换过程
在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下:
CO+H2O→H2+CO2 ΔH =-41.2kJ/mol
由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。
② 脱硫脱碳过程
各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。
粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。
一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。 4
③ 气体精制过程
经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。
目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(<-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm3/m3以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。甲烷化反应如下:
CO+3H2→CH4+H2O ΔH=-206.2kJ/mol
CO2+4H2→CH4+2H2O ΔH=-165.1kJ/mol
(3)氨合成 将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下:
N2+3H2→2NH3(g) ΔH=-92.4kJ/mol
2.合成氨的催化机理
热力学计算表明,低温、高压对合成氨反应是有利的,但无催化剂时,反应的活化能很高,反应几乎不发生。当采用铁催化剂时,由于改变了反应历程,降低了反应的活化能,使反应以显著的速率进行。目前认为,合成氨反应的一种可能机理,首先是氮分子在铁催化剂表面上进行化学吸附,使氮原子间的化学键减弱。接着是化学吸附的氢原子不断地跟表面上的氮分子作用,在催化剂表面上逐步生成—NH、—NH2和NH3,最后氨分子在表面上脱吸而生成气态的氨。上述反应途径可简单地表示为:
xFe + N2→FexN
FexN +〔H〕吸→FexNH
FexNH +〔H〕吸→FexNH2
FexNH2 +〔H〕吸FexNH3→xFe+NH3
在无催化剂时,氨的合成反应的活化能很高,大约335 kJ/mol。加入铁催化剂后,反应以生成氮化物和氮氢化物两个阶段进行。第一阶段的反应活化能为126 kJ/mol~167 kJ/mol,第二阶段的反应活化能为13 kJ/mol。由于反应途径的改变(生成不稳定的中间化合物),降低了反应的活化能,因而反应速率加快了。
3.催化剂的中毒
催化剂的催化能力一般称为催化活性。有人认为:由于催化剂在反应前后的化学性质和质量不变,一旦制成一批催化剂之后,便可以永远使用下去。实际上许多催化剂在使用过程中,其活性从小到大,逐渐达到正常水平,这就是催化剂的成熟期。接着,催化剂活性在一段时间里保持稳定,然后再下降,一直到衰老而不能再使用。活性保持稳定的时间即为催化剂的寿命,其长短因催化剂的制备方法和使用条件而异。
催化剂在稳定活性期间,往往因接触少量的杂质而使活性明显下降甚至被破坏,这种现象称为催化剂的中毒。一般认为是由于催化剂表面的活性中心被杂质占据而引起中毒。中毒分为暂时性中毒和永久性中毒两种。例如,对于合成氨反应中的铁催化剂,O2、CO、CO2和水蒸气等都能使催化剂中毒。但利用纯净的氢、氮混合气体通过中毒的催化剂时,催化剂的活性又能恢复,因此这种中毒是暂时性中毒。相反,含P、S、As的化合物则可使铁催化剂永久性中毒。催化剂中毒后,往往完全失去活性,这时即使再用纯净的氢、氮混合气体处理,活性也很难恢复。催化剂中毒会严重影响生产的正常进行。工业上为了防止催化剂中毒,要把反应物原料加以净化,以除去毒物,这样就要增加设备,提高成本。因此,研制具有较强抗毒能力的新型催化剂,是一个重要的课题。
4.我国合成氨工业的发展情况
解放前我国只有两家规模不大的合成氨厂,解放后合成氨工业有了迅速发展。1949年全国氮肥产量仅0.6万吨,而1982年达到1021.9万吨,成为世界上产量最高的国家之一。
近几年来,我国引进了一批年产30万吨氮肥的大型化肥厂设备。我国自行设计和建造的上海吴泾化工厂也是年产30万吨氮肥的大型化肥厂。这些化肥厂以天然气、石油、炼油气等为原料,生产中能量损耗低、产量高,技术和设备都很先进。
5.化学模拟生物固氮的研究
目前,化学模拟生物固氮的重要研究课题之一,是固氮酶活性中心结构的研究。固氮酶由铁蛋白和钼铁蛋白这两种含过渡金属的蛋白质组合而成。铁蛋白主要起着电子传递输送的作用,而含二个钼原子和二三十个铁和硫原子的钼铁蛋白是络合N2或其他反应物(底物)分子,并进行反应的活性中心所在之处。关于活性中心的结构有多种看法,目前尚无定论。从各种底物结合物活化和还原加氢试验来看,含双钼核的活性中心较为合理。我国有两个研究组于1973—1974年间,不约而同地提出了含钼铁的三核、四核活性中心模型,能较好地解释固氮酶的一系列性能,但其结构细节还有待根据新的实验结果精确化。
国际上有关的研究成果认为,温和条件下的固氮作用一般包含以下三个环节:
①络合过程。它是用某些过渡金属的有机络合物去络合N2,使它的化学键削弱;②还原过程。它是用化学还原剂或其他还原方法输送电子给被络合的N2,来拆开N2中的N—N键;③加氢过程。它是提供H+来和负价的N结合,生成NH3。
目前,化学模拟生物固氮工作的一个主要困难是,N2络合了但基本上没有活化,或络合活化了,但活化得很不够。所以,稳定的双氮基络合物一般在温和条件下通过化学还原剂的作用只能析出N2,从不稳定的双氮络合物还原制出的NH3的量相当微少。因此迫切需要从理论上深入分析,以便找出突破的途径

收起