关于曲面积分的疑问∫∫x^3dydz+y^3d​xdz+z^3dxdy,其中Σ为球面x^2+y^2+z^2=a^2的外侧∫∫x^3dydz+y^3dxdz+z^3dxdy,其中Σ为球面x^2+y^2+z^2=a^2的外侧.疑问是这样的:把它化成 3∫∫∫(x^2+y^+z^2)dv 为什么不

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/30 10:20:40

关于曲面积分的疑问∫∫x^3dydz+y^3d​xdz+z^3dxdy,其中Σ为球面x^2+y^2+z^2=a^2的外侧∫∫x^3dydz+y^3dxdz+z^3dxdy,其中Σ为球面x^2+y^2+z^2=a^2的外侧.疑问是这样的:把它化成 3∫∫∫(x^2+y^+z^2)dv 为什么不
关于曲面积分的疑问∫∫x^3dydz+y^3d​xdz+z^3dxdy,其中Σ为球面x^2+y^2+z^2=a^2的外侧
∫∫x^3dydz+y^3dxdz+z^3dxdy,其中Σ为球面x^2+y^2+z^2=a^2的外侧.
疑问是这样的:把它化成 3∫∫∫(x^2+y^+z^2)dv 为什么不能把x^2+y^2+z^2=a^2带入得
3a^2∫∫∫dv =3a^2 *4/3*π*a^3 而正确解答是 化成球面坐标做的

关于曲面积分的疑问∫∫x^3dydz+y^3d​xdz+z^3dxdy,其中Σ为球面x^2+y^2+z^2=a^2的外侧∫∫x^3dydz+y^3dxdz+z^3dxdy,其中Σ为球面x^2+y^2+z^2=a^2的外侧.疑问是这样的:把它化成 3∫∫∫(x^2+y^+z^2)dv 为什么不
嘿嘿,这里就是考你会不会区别面积分和重积分的地方了.
面积分的被积函数是建构在曲面方程上的,x² + y² + z² = a²,只包含方程的部分
积分域:{ x,y,z | Σ:x² + y² + z² = a² }
仅包括 = a²的部分,所以线积分和面积分都可以直接把积分域代入被积函数里.
而重积分的被积函数是建构在整个空间里的,x² + y² + z² ≤ a²,包含方程和方程里包含的空间
积分域:{ x,y,z | Ω:x² + y² + z² ≤ a² }
包括了① = a²的部分和② < a²的部分
如果把积分域代入被积函数,只有①的部分,而忽略了②的部分,这岂不是变成「球面」积分而不是「球体」积分吗?
例如对于积分域Σ:x² + y² + z² = a²,∫∫Σ (x² + y² + z²) dS = ∫∫Σ (a²) dS
但是∫∫∫Ω (x² + y² + z²) dV ≠ ∫∫∫Ω (a²) dV
这样清楚吧,曲面积分还是猛些的.
所以3∫∫∫Ω (x² + y² + z²) dV的正确做法是球坐标
= 3∫(0,2π) ∫(0,π) ∫(0,a) (r²) * (r²sinφ drdφdθ)

关于曲面积分的疑问∫∫x^3dydz+y^3d​xdz+z^3dxdy,其中Σ为球面x^2+y^2+z^2=a^2的外侧∫∫x^3dydz+y^3dxdz+z^3dxdy,其中Σ为球面x^2+y^2+z^2=a^2的外侧.疑问是这样的:把它化成 3∫∫∫(x^2+y^+z^2)dv 为什么不 关于曲面积分计算曲面积分∫∫(y^2+2z)dydz+(3z^2-x)dzdx+(x^2-y)dxdy,其中积分区域为锥面z=√x^2+y^2介于0 曲面积分∫∫(2x+3z)dydz-x(x*z+y)dzdx+(y2+2z)dxdy的全表面的外侧 设∑为曲面z=x^2+y^2(z≤1)的上侧,求曲面积分∫∫(x+z^2)dydz-zdxdy诉求 曲面积分 ∫∫(2x+z)dydz+zdxdy 积分区域:z=x^2+y^2(0 两道简单的计算曲面积分(求帮助)1 计算曲面积分∫∫Σ x^3 dydz+(1-3x^2y)dzdx+2z dxdy,其中Σ为方程x^2+y^2=z(0≤z≤1)所确定的曲面的上侧2 计算曲面积分∫∫Σ (Z^2+x)dydz+z dxdy的值,其中Σ为旋转抛 计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,∑是上半球面z=根下1-x^2-y^2的上侧 曲面积分和高斯公式求I=∫∫(z+2x)dydz+zdxdy,其中Σ是曲面z=x^2+y^2(0 计算第二型曲面积分∫∫(x^3+e^ysinz)dydz-3x^2ydzdx+zdxdy,其中S是下半球面z=-根号里1-x^2-y^2的下侧详细过程~~谢谢~~~ 计算曲面积分 I=∫∫(S+) (x^3)dydz+(z)dzdx+(y)dxdy 其中s+为曲面x^2+y^2=4,与平面z=0,Z=1所围外侧 计算∫∫3dydz+ydzdx+(z^2+2*a/3)dxdy,其中积分曲面为锥面x^2+y^2=(a-z)^2,z=0,z=a所围成的外侧. 计算曲面积分I=∫∫2x^3dydz+2y^3dzdx+3(z^2-1)dxdy,积分区域为∑,∑是曲面z=1-x^2-y^2(z≥0)的上侧.-π 利用高斯公式 我解出的答案为0 曲面积分 ∫∫(y^2-x)dydz+(z^2-y)dzdx+(x^2-z)dxdy,∑为Z=1-x^2-y^2位于侧面上方的上侧 计算曲面积分 ∫∫Σ x²dydz+y²dxdz+z²dxdy,其中Σ是由x²+y²=1 z=[(4-x²-y²)^ 0.5] z>=0 围成的空间立体的计算曲面积分 ∫∫Σ x²dydz+y²dxdz+z²dxdy,其中Σ是由x²+y²= 曲面积分计算问题(高斯定理的利用)计算曲面面积I = ∫∫2x^3dydz+2y^3dzdx+3(z^2-1)dxdy∑其中∑是曲面z=1-x^2-y^2(z>=0)的上侧 我想知道第一次运用高斯定理之后的三重积分如何作!仰望的思路正确 计算曲面积分∫∫(z^2+x)dydz,其中S是旋转抛物面z=(x^2+y^2)介于平面z=0及z=1之间的部分的下侧.求解,在线等 若∑是由平面x+y+z=1及三个坐标面围成的立体表面外侧,则曲面积分∫∫∫(x+1)dydz+ydzdx+dxdy= 计算曲面积分∫∫(z^2+x)dydz-zdxdy其中积分面为z=1/2(x^2+y^2)介于z=0,和z=2之间部分下侧不要用两类曲面积分间关系转化为第一类曲面积分做,就直接按第二类曲面积分算下,