曲线y=sinx(0≤x≤π)绕x轴旋转一周得到几何体的体积是(π^2)/2首先这是求旋转体体积的问题 切实绕X轴的类型其次其体积微元为π*F(X)的平方求微分最后在0到π上对SINX的平方求积分 再乘以π

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/01 07:36:54

曲线y=sinx(0≤x≤π)绕x轴旋转一周得到几何体的体积是(π^2)/2首先这是求旋转体体积的问题 切实绕X轴的类型其次其体积微元为π*F(X)的平方求微分最后在0到π上对SINX的平方求积分 再乘以π
曲线y=sinx(0≤x≤π)绕x轴旋转一周得到几何体的体积是
(π^2)/2
首先这是求旋转体体积的问题 切实绕X轴的类型
其次其体积微元为π*F(X)的平方求微分
最后在0到π上对SINX的平方求积分 再乘以π 即所求

曲线y=sinx(0≤x≤π)绕x轴旋转一周得到几何体的体积是(π^2)/2首先这是求旋转体体积的问题 切实绕X轴的类型其次其体积微元为π*F(X)的平方求微分最后在0到π上对SINX的平方求积分 再乘以π
求积分运算
∫.
相信我

pi*y^2积分
结果为π^2/2

曲线y=sinx(0≤x≤π)绕y轴旋转一周得到几何体的体积是麻烦写出详细过程,谢啦 建立下列旋转曲面的方程曲线y=sinx 绕x轴旋转 用微元法求曲线y=sinx(-π≤x≤π)绕x轴旋转一周而形成的旋转体的体积 求解大学高数利用微元法求曲线y=sinx(-π≤x≤π)绕x轴旋转一周而成的旋转体体积 曲线y=sinx与x=0,x=π和x轴所围图形绕x轴旋转一周所得立体体积是 计算曲线y=sinx与x轴围成的平面绕y轴旋转的体积 求曲线方程y=sinx,0≤ x≤π与y=0所围成的图形绕y轴旋转一周所得的旋转体的体积 求曲线方程y=sinx,0≤ x≤π与y=0所围成的图形绕Ox轴旋转一周所得的旋转体的体积 求曲线y=sinx+1与直线x=π及x,y轴所围成平面图形绕y轴旋转所得立体的体积 y=sinx,0≤x≤π绕x轴旋转所得旋转曲面的面积和体积麻烦说详细些,怎么列式子 曲线y=sinx(0≤x≤π)绕x轴旋转一周得到几何体的体积是(π^2)/2首先这是求旋转体体积的问题 切实绕X轴的类型其次其体积微元为π*F(X)的平方求微分最后在0到π上对SINX的平方求积分 再乘以π 求曲线y=sinx,从x=0到x=π一段和x轴所围成的图形绕x轴旋转所形成的旋转体的体积? 求由Y=sinx(0≤x≤π)与X轴所围成图形绕X轴旋转一周而成的立体的体积. 在区间【0,π/2】上,曲线y=sinx与x=π/2,y=0所围成的图形,分别绕x轴、y轴旋转所围成的立体的面积 求曲线y=sinx与直线y=0及x=π/2所围图形绕x=y^2轴旋转一周所成立体的体积 曲线y=sinx绕着x轴旋转一周所形成的旋转曲面的方程是 曲线y=sinx(0≤x≤π)绕y轴旋转一周得到几何体的体积是.记得是Y轴,别写出绕X轴的,好的马上给分我们现在学到用微积分求体积。我做的是这样,y=πfo~1[(arcsiny)^2]dy,我用了分部积分,可还是不会 y=sinx和x轴绕y轴旋转一周所得旋转体的体积怎么求x的范围是0到π,绕y轴旋转哦,