数学趣事,有点智慧的,谁有?

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/29 06:28:20

数学趣事,有点智慧的,谁有?
数学趣事,有点智慧的,谁有?

数学趣事,有点智慧的,谁有?
1.古时后有个老人,有17头牛,临死吩咐将其中1/2给大儿子,
1/3给二儿子,1/9给三儿子,这样分17头牛岂不是要砍得乱七八糟?
这时邻村有个聪明的老大爷,他把自己家的一头牛牵来,
这样有18头,1/2共9头给老大,1/3共6头给老二,1/9共2头给老三,
还剩下他牵来的一头,他仍然原封不动牵回,受到大家的称赞.
2.国际象棋据说设古代印度发明的.
一个国王非常喜欢这个游戏,他问发明者要什么赏赐,
发明者回答在棋盘的64格中,第一格放1粒米,第二格放2粒米,
第三格4粒,第四格8粒,没有说完,国王叫他拿一大袋米.
我们知道这是一个等比数列,共有2的64次方减1(粒),
大约1.85×10的20次方,共50亿人吃274年,国王给得起吗?

海盗分金问题异调

这是一帮亡命之徒,在海上抢人钱财,夺人性命,干的是刀头上舔血的营生。在我们的印象中,他们一般都瞎一只眼,用条黑布或者讲究点的用个黑皮眼罩把坏眼遮上。他们还有在地下埋宝的好习惯,而且总要画上一张藏宝图,以方便后人掘取。不过大家是否知道,他们是世界上最民主的团体。参加海盗的都是桀骜不驯的汉子,是不愿听人命令的,船上平时一切事都由投票解决。船长的唯一...

全部展开

海盗分金问题异调

这是一帮亡命之徒,在海上抢人钱财,夺人性命,干的是刀头上舔血的营生。在我们的印象中,他们一般都瞎一只眼,用条黑布或者讲究点的用个黑皮眼罩把坏眼遮上。他们还有在地下埋宝的好习惯,而且总要画上一张藏宝图,以方便后人掘取。不过大家是否知道,他们是世界上最民主的团体。参加海盗的都是桀骜不驯的汉子,是不愿听人命令的,船上平时一切事都由投票解决。船长的唯一特权,是有自己的一套餐具——可是在他不用时,其他海盗是可以借来用的。船上的唯一惩罚,就是被丢到海里去喂鱼。
现在船上有若干个海盗,要分抢来的若干枚金币。自然,这样的问题他们是由投票来解决的。投票的规则如下:先由最凶猛的海盗来提出分配方案,然后大家一人一票表决,如果有50%或以上的海盗同意这个方案,那么就以此方案分配,如果少于50%的海盗同意,那么这个提出方案的海盗就将被丢到海里去喂鱼,然后由剩下的海盗中最凶猛的那个海盗提出方案,依此类推。
我们先要对海盗们作一些假设。
1) 每个海盗的凶猛性都不同,而且所有海盗都知道别人的凶猛性,也就是说,每个海盗都知道自己和别人在这个提出方案的序列中的位置。另外,每个海盗的数学和逻辑都很好,而且很理智。最后,海盗间私底下的交易是不存在的,因为海盗除了自己谁都不相信。
2) 一枚金币是不能被分割的,不可以你半枚我半枚。
3) 每个海盗当然不愿意自己被丢到海里去喂鱼,这是最重要的。
4) 每个海盗当然希望自己能得到尽可能多的金币。
5) 每个海盗都是现实主义者,如果在一个方案中他得到了1枚金币,而下一个方案中,他有两种可能,一种得到许多金币,一种得不到金币,他会同意目前这个方案,而不会有侥幸心理。总而言之,他们相信二鸟在林,不如一鸟在手。
6) 最后,每个海盗都很喜欢其他海盗被丢到海里去喂鱼。在不损害自己利益的前提下,他会尽可能投票让自己的同伴喂鱼。
现在,如果有10个海盗要分100枚金币,将会怎样?
要解决这类问题,我们总是从最后的情形向后推,这样我们就知道在最后这一步中什么是好的和坏的决定。然后运用这个知识,我们就可以得到最后第二步应该作怎样的决定,等等等等。要是直接就从开始入手解决问题,我们就很容易被这样的问题挡住去路:“要是我作这样的决定,下面一个海盗会怎么做?” 以这个思路,先考虑只有2个海盗的情况(所有其他的海盗都已经被丢到海里去喂鱼了)。记他们为P1和P2,其中P2比较凶猛。P2的最佳方案当然是:他自己得100枚金币,P1得0枚。投票时他自己的一票就足够50%了。 往前推一步。现在加一个更凶猛的海盗P3。P1知道——P3知道他知道——如果P3的方案被否决了,游戏就会只由P1和P2来继续,而P1就一枚金币也得不到。所以P3知道,只要给P1一点点甜头,P1就会同意他的方案(当然,如果不给P1一点甜头,反正什么也得不到,P1宁可投票让P3去喂鱼)。所以P3的最佳方案是:P1得1枚,P2什么也得不到,P3得99枚。
P4的情况差不多。他只要得两票就可以了,给P2一枚金币就可以让他投票赞同这个方案,因为在接下来P3的方案中P2什么也得不到。P5也是相同的推理方法只不过他要说服他的两个同伴,于是他给每一个在P4方案中什么也得不到的P1和P3一枚金币,自己留下98枚。
依此类推,P10的最佳方案是:他自己得96枚,给每一个在P9方案中什么也得不到的P2,P4,P6和P8一枚金币。
下面是以上推理的一个表(Y表示同意,N表示反对):
P1 P2 0 100 N Y P1 P2 P3 1 0 99 Y N Y P1 P2 P3 P4 0 1 0 99 N Y N Y P1 P2 P3 P4 P5 1 0 1 0 98 Y N Y N Y …… P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 0 1 0 1 0 1 0 1 0 96 N Y N Y N Y N Y N Y
现在我们将海盗分金问题推广:
1) 改变一下规则,投票中方案必须得到超过50%的票数(只得到50%票数的方案的提出者也会被丢到海里去喂鱼),那么如何解决10个海盗分100枚金币的问题?
2) 不改变规则,如果让500个海盗分100枚金币,会发生什么?
3) 如果每个海盗都有1枚金币的储蓄,他可以把这枚金币用在分配方案中,如果他被丢到海里去喂鱼,那么他的储蓄将被并在要分配的金币堆中,这时候又怎样?
通过对规则的细小改变,海盗分金问题可以有许多变化,但是最有趣的大概是1)和2)(规则仍为50%票数即可)的情况,本帖只对这两种情况进行讨论。
首先考虑1)。现在只有P1和P2的情形变得对P2其糟无比:1票是不够的,可是就算他把100枚金币都给P1,P1也照样会把他丢到海里去。可是P2很关键,因为如果P3进行分配方案的话,即使他一枚金币也不给P2,P2也会同意,这样一来P3就有P2这张铁票!P3的最佳方案就是:独吞100枚金币。
P4要3张票,而P3是一定反对他的,而如果不给P2一点甜头,P2也会反对,因为P2可以在P3的方案中得救,目前为什么不把P4丢到海里呢?所以要分别给P1和P2一枚金币,这样P4就有包括他自己1票的3票。P4的方案为:P1,P2每人1枚金币,他自己98枚。
P5的情况要复杂点,他也要3票。P4是会反对他的,所以不用给,给P3一枚金币就能使他支持自己的方案,因为在接下来的P4方案中他什么也得不到。问题是P1和P2:只要其中有一个支持就可以了。可是只给1枚金币是不行的,P4方案中他们一定有1枚金币可得,所以只要在他们中随便选一个,给2枚金币,另一个就对不起了,不给。这样P5的方案是:自己97枚,P3得1枚,P1或P2得2枚。
P6的方案建立在P5的上面,只要给每个P5方案中不得益的海盗1枚金币。要注意的是,P1和P2都应该看作在P5方案中不得益的:他们可能得2枚,可是也可能1枚不得,所以只要P6给他们1枚金币,根据“二鸟在林,不如一鸟在手“的原则,就可以让他们支持P6的方案。所以P6的方案是唯一的:P1,P2,P4每人1枚金币,P6自己拿97枚。
这样继续下去,P9的方案是:P3,P5,P7每人1枚金币,然后在P1,P2,P4,P6中任选一人给2枚金币,P9自己得95枚。最后,P10的方案是唯一的:P1,P2,P4,P6,P8每人1枚金币,P10自己得95枚。 2)是最有趣的(提醒:我们回到50%票即可的规则)。原题解中的推理过程直到200个海盗都是成立的:P200给每个偶数号的海盗1枚金币,包括他自己,其他海盗什么也得不到。从P201开始,继续推理就变得有点困难了:P201为了不被丢到海里去,必须什么也不留给自己,而给从P1到P199中所有奇数号海盗每人1枚金币,从而争取到100票,加上他自己1票,逃过一劫。P202也什么都得不到,他必须用这100枚金币买通100个从P201的方案中什么也得不到的海盗,要注意到现在这个方案不是唯一的:P201的方案中得不到金币的海盗是所有奇数号的海盗,有101个(包括P201),所以有101种方案。
P203必须得到102票,除了自己的1票外,他只有100枚金币,所以只能买到100票,所以可怜的家伙就被丢到海里喂鱼了。但是,P203是个很重要的角色,因为P204知道如果自己的方案不被通过,P203也一样会完蛋,所以他有P203的一张铁票。所以P204可以大出一口气:他自己一票,加上P203一票,然后加上用100枚金币买的确100票,他就得救了!100个有幸得到1枚金币的海盗,可以是P1到P202中任何100个:因为其中的偶数号的从P202的方案中什么也得不到,如果P204给他们中某个海盗1枚金币,这个海盗一定会赞同这个方案;而编号为奇数的海盗呢,只是有可能从P202的方案中得益罢了(可能性为100/101),所以根据“二鸟在林,不如一鸟在手“的原则,如果能得到1枚金币,他也会赞同这个方案。
接下去P205是不能把希望放在P203和P204这两张票上的,因为就算他被丢到海里去,P203和P204还可以通过P204的方案机会活下来。P206虽然可以靠P205的铁票,加上自己1票和100枚金币搞到的100票,只有102票,所以他也被丢到海里喂鱼。P207好不了多少,他需要104票,而他自己以及P205和P206的铁票加上100枚金币搞到的100票只有103票——只好下海。
P208运气比较好,他同样也要104票,可是P205,P206,P207都会投票赞成他的方案!加上他自己的1票和买来的100票,他终于逃脱了做鱼食的命运。
这样我们就有了一种可以一直推下去的新逻辑。海盗可以什么也不留给自己,买上100票,然后依靠一部分一定会被丢下海的海盗的铁票,从而让自己的方案通过。有这样运气的海盗分别是P201,P202,P204,P208,P216,P232,P264,P328和P456……我们看到这样的号码是200加上一个2的次幂。 哪些海盗是受益者呢,显然铁票是不用(不能)给金币的。所以只有上一个幸运号码及他以前的那些海盗才有可能得到1枚金币。于是我们得到500海盗分100枚金币的结论是:前44个最凶猛的海盗被丢进海里,然后P456给P1到P328中的100个海盗每人1枚金币。
就这样,最凶猛的海盗被丢进海里,而比较凶猛的什么也得不到,而只有最温柔的那些海盗,才有可能得到1枚金币。正如《马太福音》所说:“温柔的人有福了,因为他们必承受地土!”
当数学家的15个原因
1、从楼上砸下一个西瓜,会有九个经理被砸着,而一个数学家都不会有。
2、当利息或税率调整时,数学家是算的最清楚的一个。
3、数学这个职业是投资回报率最高的职业之一。只需要投入一枝笔加几张纸。
4、数学家永远不会象发明家那样被专利困扰,他不怕有假冒伪劣产品出现。
5、当数学家犯了常识性错误时(比如:走路撞墙、洗衣服用味精),人们给予的往往是表扬而不是批评。
6、最近研究表明,用脑可以减肥,所以数学家不会有肥胖的后顾之忧。
7、因为数学家当不了物理学家、文学家、政治家...所以他只好去当数学家。
8、据说全世界的数学家正准备联合起来成立一个机构然后上市,每个数学家可以分到XXX万股,所以大家要当数学家。
9、现在失业率太高,而当数学家永远也不会失业。
10、当政治家往往在下台后被万人唾骂,当数学家就没有这样的名誉风险。
11、本来不是数学家,但大家都称呼数学家,于是就当了数学家。
12、在很多领域有种族、性别的歧视,当数学家就不需要享受此待遇。
13、数学家经常有免费出国的机会。
14、数学家是最先实现家庭办公的职业。
15、据不完全统计,数学家的婚姻都很幸福。当然,也有数学家终身未娶(嫁),因此也没有婚姻的烦恼。

π的历史
圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母“π”来表示。1706年,英国人琼斯首次创用π代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。现在π已成为圆周率的专用符号,π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。
在古代,实际上长期使用 π=3这个数值,巴比伦、印度、中国都是如此。到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将值改为根号10(约为3.16)。真正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于三又七分之一而大于三又七十一分之十。这是第一次在科学中创用上、下界来确定近似值。第一次用正确方法计算π值的,是魏晋时期的刘徽,在公元263年,他创用了用圆的内接正多边形的面积来逼近圆面积的方法,算得π值为3.14。我国称这种方法为“割圆术”。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,将3.14称为徽率。
公元460年,南朝的祖冲之利用刘徽的割圆术,把π值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。祖冲之还找到了两个分数:22/7和113/355,用分数来代替π,极大地简化了计算,这种思想比西方也早一千多年。
祖冲之的圆周率,保持了一千多年的世界记录。终于在1596年,由荷兰数学家卢道夫打破了。他把π值推到小数点后第15位小数,最后推到第35位。为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.14159265358979323846264338327950288这个数,从此也把它称为“卢道夫数”。
之后,西方数学家计算 的工作,有了飞速的进展。1948年1月,费格森与雷思奇合作,算出808位小数的π值。计算机问世后,π的人工计算宣告结束。20世纪50年代,人们借助计算机算得了10万位小数的π值,70年代又突破这个记录,算到了150万位。到90年代初,用新的计算方法,算到的值已到了4.8亿位。π的计算经历了几千年的历史,它的每一次重大进步,都标志着技术和算法的革新。

四色猜想
世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。
趣味数学故事:韩信点兵
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?
首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」
答曰:「二十三」
术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。」
孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。
趣味数学故事:火柴游戏
一个最普通的火柴游戏就是两人一起玩,先置若干支火柴於桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最后一根火柴者获胜。
规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜?
例如:桌面上有n=15根火柴,甲、乙两人轮流取,甲先取,则甲应如何取才能致胜?
为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取后留下4根火柴,最后也一定是甲获胜。由上之分析可知,甲只要使得桌面上的火柴数为4、8、12、16...等让乙去取,则甲必稳操胜券。因此若原先桌面上的火柴数为15,则甲应取3根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。
规则二:限制每次所取的火柴数目为1至4根,则又如何致胜?
原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。
通则:有n支火柴,每次可取1至k支,则甲每次取后所留的火柴数目必须为k+1之倍数。
规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1、3、7,则又该如何玩法?
分析:1、3、7均为奇数,由於目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1、3、7根火柴后获得0,但假使如此也不能保证甲必赢,因为甲对於火柴数的奇或偶,也是无法依照己意来控制的。因为〔偶-奇=奇,奇-奇=偶〕,所以每次取后,桌上的火柴数奇偶相反。若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随后又把偶数变成奇数,甲又把奇数回覆到偶数,最后甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。
通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。
规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数)。
分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜。此外,若甲留给乙取的火柴数为5之倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最后剩下2根,那时乙只能取1,甲便可取得最后一根而获胜。
通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2。
味数学故事:数学家的遗嘱
阿拉伯数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩。"如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二 的遗产,我的女儿将得三分之一。"。
而不幸的是,在孩子出生前,这位数学家就去世了。之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。
如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢?
趣味数学故事:麦比乌斯带
每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。这是德国数学家麦比乌斯(M?bius.A.F 1790-1868)在1858年发现的,自此以后那种带就以他的名字命名,称为麦比乌斯带。有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展。

收起