平面上有n(n≥3)个点任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少个不同的三角形?1、 当仅有三个点时,可作―――个三角形;当有4个点时,可作―――个三角形;当有5

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/30 12:42:46

平面上有n(n≥3)个点任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少个不同的三角形?1、 当仅有三个点时,可作―――个三角形;当有4个点时,可作―――个三角形;当有5
平面上有n(n≥3)个点任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少个不同的三角形?
1、 当仅有三个点时,可作―――个三角形;当有4个点时,可作―――个三角形;当有5个点时,可作―――个三角形.
2、 规律是什么(点的个数和可作出的三角形的个数关系)

平面上有n(n≥3)个点任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少个不同的三角形?1、 当仅有三个点时,可作―――个三角形;当有4个点时,可作―――个三角形;当有5
1、 当仅有三个点时,可作1个三角形;当有4个点时,可作4个三角形;当有5个点时,可作10个三角形.
2、 规律是N个数和可作出的三角形CN(3)=N(N-1)(N-2)/6个.

1.1; 4; 10
2.n(n-1)(n-2)/6=C(3,n) (组合数)

平面上有n(n≥3)个点任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少个不同的三角形?1平面上有n(n≥3)个点任意三个点不在同一直线上,过任意三点作三角形,一共能作出 平面上有N(n≥3)个点,任意三个点不在同一直线上,过任意三点做三角形,一共能作出多少种不同的三角形? 已知平面上有N个点(N不小于3的整数)其中任意三个点都不在同一条直线上,连接任意两点可画几条线段 平面上有n个点,任意三个点不在同一直线上,过任意三点作三角形,共能作出多少个? 平面上有n(n≥3)个点任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少个不同的三角形?1、 当仅有三个点时,可作―――个三角形;当有4个点时,可作―――个三角形;当有5 平面上有n(n≥3)个点任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少个不同的三角形?需要清晰的推理过程!答案是n(n-1)(n-2)/6,用的是初一下的知识! 平面上有n个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少个不同的三角形?规律n大于等于3 和线段有关的初一数学题1.若经过平面上的三个点,画直线有几条(其中任意三点不在同一直线上)若经过平面的N个点,画直线有几条(其中任意三点不在同一直线上)这题把我看晕了,是有3条 已知平面上共有n个点(n为不小于3的整数),其中任意三个点都不在同一直线上,那么连接任意两点,可画多少条直线? 平面上有n个点(n大于等于3),其中任意三点不在同一直线上,那么经过任意两点有多少平面上有n个点(n大于等于3),其中任意三点不在同一直线上,那么经过任意两点有多少条直线? 平面上有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少个不同的三角形?(题目见下)归纳:3个点可作()个三角形;4个点可作()个三角形;5个点可作() 探究:平面上有n(n大于等于3)个点,任意三个点不在同一直线上,过任意三个点作三角形,一共能做多少不同的三角形?①分析:当仅有3个点时,可做()个三角形;当有4个点时,可做()个三 探究:平面上有n(n大于等于3)个点,任意三个点不在同一直线上,过任意三个点作三角形,一共能做多少不同的三角形?当仅有3个点时,可做()个三角形;当有4个点时,可做()个三角形;当 平面上有n个点(n大于等于2).且任意三个点不在同意直线上问:过任意三点做三角形(n大于等于3),一共能作 若平面上有n个点,任意3点都不在同一直线上,以其中3个点为顶点的三角形有多少个?若平面上有n个点,任意3点都不在同一直线上,以其中3个点为顶点的三角形有多少个? 平面上有n个点(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少当有5个点时能做出多少个/要写出推理过程和结论哦,好的+分kuai kuai错了吧,4个点时4*3*2/6=4饿, 平面上有n个点(n≥3),且任意三个点不在同一条直线上,过任意一点作三角形,一共能作多少个不同的三角形. 平面上有n(n大与等于3)个点,任意三个点不在同一直线,过任意三点作三角形,一共能做出多少个不同的三角形?