谁有英文版关于牛顿的文章的一篇文章就可以了

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/30 13:23:40

谁有英文版关于牛顿的文章的一篇文章就可以了
谁有英文版关于牛顿的文章的
一篇文章就可以了

谁有英文版关于牛顿的文章的一篇文章就可以了
OBSERVATIONS ON DANIEL AND THE APOCALYPSE OF ST. JOHN
by Isaac Newton
The Gift of Prophecy
Many students of Bible Prophecy know of the Jesuit origins of Futurism and Preterism but, few know the role that Isaac Newton played in creating the Protestant Historicist interpretation. Unlike the two Catholic interpretations which were created during the Counter-Reformation to defend a corrupt church, the Historicist Interpretation evolved over many centuries.
Lost during the dark ages, the prophetic insights of the early fathers were rediscovered by Wycliffe, snuffed out and then rekindled by Luther. John Knox fanned them to an open flame which was brought to brilliant radiance during the enlightenment.
For some time after Luther’s bold accusation that the Papacy was AntiChrist, Roman Catholic leadership responded by suppression and persecution. But, suppression proved impossible and persecution only fanned the flames for the stake proved a powerful pulpit. When England defeated the Spanish Armada in 1588 the island citadel of Protestantism was established. Rome finally had to meet the reformer’s challenge on their own ground - in the scriptures.
Through a collaboration of Jesuits Francisco Ribera of Spain and Robert Bellarmine of Rome, the Papacy put forward its counter interpretation, Futurism. The Pope was not AntiChrist they contended for he was not to appear until “in the future”. Their new interpretation was published in 1591 - three years after the defeat of the Spanish Armada when all hope of crushing Protestantism was gone. Luis de Alcazar published the contradictory Preterist interpretation in 1614. He argued that AntiChrist had come and gone before the book of Revelation was written.
There was method in the seeming madness of Rome’s contradictory interpretations. The preterist system appeals to the liberals in the church who deny the miraculous and scoff at the idea that prophecy is history pre-written. Futurism assigns the fulfillment of the book of Revelation to a 3 ½ year period at the end of time which appeals to fundamentalists. The historicist interpretation, also called the continuist interpretation finds fulfillments in the past, present and future. Theirs is a living book always unfolding revelations to each generation. For as William Blake wrote:
Hear the voice of the Bard! (Prophet)
Who present, past and future sees;
Whose ears have heard the Holy Word
That walked among the ancient trees.
Futurism would not be popular for 350 years, but Preterism took hold quickly. Rome was still the intellectual center of the church and her response was all the more effective because Protestantism had no systematic interpretation of the prophecies, no seminaries, and no lofty ecclesiastical citadel to command respect.
If Rome’s arguments could not be answered then Protestantism would be defeated and the martyr’s blood would be spilt in vain. There was no one living that could answer Goliath’s taunt, but God was to send a man more than equal to the challenge.
From time to time, a man arises like a bubble from the deep whose work changes the course of human thought pointing to the true path away from the trackless desert. Such a man was born in Lincolnshire, England in 1642. There entered the world one of the strangest and most baffling figures in the history of human thought. Einstein remarked that Newton was a more significant figure than his own mastery makes of him, since he was placed by fate at the turning point of the world’s intellectual development. Isaac Newton was to be the starburst of the Enlightenment.

Isaac Newton's life can be divided into three quite distinct periods. The first is his boyhood days from 1643 up to his appointment to a chair in 1669. The second period from 1669 to 1687 was the high...

全部展开

Isaac Newton's life can be divided into three quite distinct periods. The first is his boyhood days from 1643 up to his appointment to a chair in 1669. The second period from 1669 to 1687 was the highly productive period in which he was Lucasian professor at Cambridge. The third period (nearly as long as the other two combined) saw Newton as a highly paid government official in London with little further interest in mathematical research.
Isaac Newton was born in the manor house of Woolsthorpe, near Grantham in Lincolnshire. Although by the calendar in use at the time of his birth he was born on Christmas Day 1642, we give the date of 4 January 1643 in this biography which is the "corrected" Gregorian calendar date bringing it into line with our present calendar. (The Gregorian calendar was not adopted in England until 1752.) Isaac Newton came from a family of farmers but never knew his father, also named Isaac Newton, who died in October 1642, three months before his son was born. Although Isaac's father owned property and animals which made him quite a wealthy man, he was completely uneducated and could not sign his own name.
全文连接地址在下面

收起

http://scidiv.bcc.ctc.edu/Math/Newton.html
Issac Newton
born: December 25, 1642 Woolsthorpe, England
died: March 20, 1727
I do not know what I may appear to the world; but to myself ...

全部展开

http://scidiv.bcc.ctc.edu/Math/Newton.html
Issac Newton
born: December 25, 1642 Woolsthorpe, England
died: March 20, 1727
I do not know what I may appear to the world; but to myself I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.
(Isaac Newton)
CoÐinventor of calculus. Discovered the law of Universal Gravitation. Newton's 3 laws of motion. Corpuscular theory of light. Law of cooling. Professor, Theologian, Alchemist, Warden of the Mint.
Newton was a premature child and was very small at birth. His father had died before Newton's birth, and, when he was 3 years old, his mother remarried and left him in the care of his grandmother. He was somewhat sickly as a child, and since he could not join the other children in games he kept himself amused by building mechanical toys such as wooden clocks and sundials and a mouse-powered flour mill. He read a great deal and kept a journal of observations.
Newton began his schooling in the village schools and later was sent to Grantham Grammar School where he became the top boy in the school. At Grantham he lodged with the local apothecary and eventually became engaged to the apothecary's stepdaughter, Miss Storey, before he went off to Cambridge University at the age of 19. But Newton became engrossed in his studies, the romance cooled and Miss Storey married someone else. It is said he kept a warm memory of this love, but Newton had no other recorded 'sweethearts' and never married.
In 1661, Newton entered Trinity College, Cambridge as a student who earned his expenses by doing menial work. Not much is known of his college days, but his account book seems normal enough -- it mentions several tavern bills and two losses at cards. He received his B.A. degree in 1664, the year that the bubonic plague was sweeping Europe. The colleges closed for what turned out to be two years, so Newton returned to Woolsthorpe to think.
Up until then Newton had been somewhat precocious and had been a successful student, but he had done nothing really outstanding. Now things started to happen. His two years at Woolsthorpe represent the greatest recorded achievement of a human intellect in a short period. In these two years, this 'kid' extended the binomial theorem, invented calculus, discovered the law of universal gravitation and had enough time left over to experimentally prove that white light is composed of all colors. Then he had his 25th birthday. If Newton had communicated these results and then died, his reputation would be almost a great as it is today. He lived for another 60 years and made a few additional contributions to the pool of knowledge, but, at most, these later results would have earned him a footnote in history. In two years he invented the calculus which would quickly grow into the largest and most important field in mathematics and which would first have a tremendous impact on physics and astronomy and more recently on fields of biology, economics, business and even political science. At the same time he discovered the law of universal gravitation which explains, on a large scale, how the universe operates.
When the plague subsided and the schools reopened in 1667, Newton returned to Trinity College as a Fellow (professor), and 2 years later Dr. Isaac Barrow, Newton's teacher, resigned so Newton could become Lucasian Professor of Mathematics. He was now 26, and from here on it was mostly downhill, at least intellectually. Newton lectured on optics and calculus and physics; he built telescopes and observed Jupiter's moons, and calculated orbits. But these areas became secondary interests. His heart was really in alchemy ("lead into gold," the forerunner of chemistry) and theology and the spiritual universe. He attempted to reconcile the dates of the Old Testament with historical dates, became very involved with astrology and attempted to contact departed "souls." In hindsight, it is easy to dismiss all of this as nonsense, but these were serious attempts of a serious man to understand the entire universe. It is unfortunate, however, that Newton devoted so little of the rest of his life to mathematics and physics. The few times he did return to these areas, he proved that he had not lost his genius.
Newton's great discoveries in physics were finally published in 1687 as Philosophiae Naturalis Principia Mathematica (usually just called the Principia). By the late 1690s, the followers of Newton and Leibniz were involved in very heated nationalistic arguments over priority in the invention of calculus, and these arguments raged for over a century. Mostly, Newton and Leibniz remained above the squabbling, and the consensus is that each made the discoveries independently. Newton was the first to make the discoveries but he waited 20 years to publish them. Leibniz did not delay as long and published his results first. As a result of this squabble, British mathematicians ignored the fruitful developments in mathematics on the continent and stagnated for almost a century.
In developing the calculus, Newton used the method of "fluxions" (from the Latin "flow"): functions flowed and he considered their "rate of flow." He routinely dealt with "infinitesimal" (infinitely small quantities) and used dots above the variable functions to denote derivatives. The notations we use in calculus are primarily due to the other inventor of calculus, Leibniz. Newton and Leibniz both used an intuitive idea of "limit," but neither seemed to have a precise definition of it.
Newton served in Parliament twice. He was elected President of the Royal Society and held that position for 24 years. In 1696 he was appointed Warden of the Mint and put in charge of the system of coinage in the British Empire. In 1705 he was knighted by Queen Anne. Except for a few periods of severe insomnia and a persecution mania (perhaps due to overwork or mercury poisoning from his work at the Mint), Newton's health was excellent until the last 3 years of his life. He died in his sleep at the age of 85, and was buried with full national honors in West Minster Abbey.
------------------------------------------------
用"Issac Newton"在google搜,很多。
比如:
http://scienceworld.wolfram.com/biography/Newton.html
http://www.lucidcafe.com/library/95dec/newton.html
http://en.wikipedia.org/wiki/Isaac_Newton

收起

Newton, Isaac (1642-1727)




English physicist and mathematician who was born into a poor farming family. Luckily for humanity, Newton was not a good farmer, and was se...

全部展开

Newton, Isaac (1642-1727)




English physicist and mathematician who was born into a poor farming family. Luckily for humanity, Newton was not a good farmer, and was sent to Cambridge to study to become a preacher. At Cambridge, Newton studied mathematics, being especially strongly influenced by Euclid, although he was also influenced by Baconian and Cartesian philosophies. Newton was forced to leave Cambridge when it was closed because of the plague, and it was during this period that he made some of his most significant discoveries. With the reticence he was to show later in life, Newton did not, however, publish his results.
Newton suffered a mental breakdown in 1675 and was still recovering through 1679. In response to a letter from Hooke, he suggested that a particle, if released, would spiral in to the center of the Earth. Hooke wrote back, claiming that the path would not be a spiral, but an ellipse. Newton, who hated being bested, then proceeded to work out the mathematics of orbits. Again, he did not publish his calculations. Newton then began devoting his efforts to theological speculation and put the calculations on elliptical motion aside, telling Halley he had lost them (Westfall 1993, p. 403). Halley, who had become interested in orbits, finally convinced Newton to expand and publish his calculations. Newton devoted the period from August 1684 to spring 1686 to this task, and the result became one of the most important and influential works on physics of all times, Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy) (1687), often shortened to Principia Mathematica or simply "the Principia."
In Book I of Principia, Newton opened with definitions and the three laws of motion now known as Newton's laws (laws of inertia, action and reaction, and acceleration proportional to force). Book II presented Newton's new scientific philosophy which came to replace Cartesianism. Finally, Book III consisted of applications of his dynamics, including an explanation for tides and a theory of lunar motion. To test his hypothesis of universal gravitation, Newton wrote Flamsteed to ask if Saturn had been observed to slow down upon passing Jupiter. The surprised Flamsteed replied that an effect had indeed been observed, and it was closely predicted by the calculations Newton had provided. Newton's equations were further confirmed by observing the shape of the Earth to be oblate spheroidal, as Newton claimed it should be, rather than prolate spheroidal, as claimed by the Cartesians. Newton's equations also described the motion of Moon by successive approximations, and correctly predicted the return of Halley's Comet. Newton also correctly formulated and solved the first ever problem in the calculus of variations which involved finding the surface of revolution which would give minimum resistance to flow (assuming a specific drag law).
Newton invented a scientific method which was truly universal in its scope. Newton presented his methodology as a set of four rules for scientific reasoning. These rules were stated in the Principia and proposed that (1) we are to admit no more causes of natural things such as are both true and sufficient to explain their appearances, (2) the same natural effects must be assigned to the same causes, (3) qualities of bodies are to be esteemed as universal, and (4) propositions deduced from observation of phenomena should be viewed as accurate until other phenomena contradict them.
These four concise and universal rules for investigation were truly revolutionary. By their application, Newton formulated the universal laws of nature with which he was able to unravel virtually all the unsolved problems of his day. Newton went much further than outlining his rules for reasoning, however, actually describing how they might be applied to the solution of a given problem. The analytic method he invented far exceeded the more philosophical and less scientifically rigorous approaches of Aristotle and Aquinas. Newton refined Galileo's experimental method, creating the compositional method of experimentation still practiced today. In fact, the following description of the experimental method from Newton's Optics could easily be mistaken for a modern statement of current methods of investigation, if not for Newton's use of the words "natural philosophy" in place of the modern term "the physical sciences." Newton wrote, "As in mathematics, so in natural philosophy the investigation of difficult things by the method of analysis ought ever to precede the method of composition. This analysis consists of making experiments and observations, and in drawing general conclusions from them by induction...by this way of analysis we may proceed from compounds to ingredients, and from motions to the forces producing them; and in general from effects to their causes, and from particular causes to more general ones till the argument end in the most general. This is the method of analysis: and the synthesis consists in assuming the causes discovered and established as principles, and by them explaining the phenomena preceding from them, and proving the explanations."
Newton formulated the classical theories of mechanics and optics and invented calculus years before Leibniz. However, he did not publish his work on calculus until afterward Leibniz had published his. This led to a bitter priority dispute between English and continental mathematicians which persisted for decades, to the detriment of all concerned. Newton discovered that the binomial theorem was valid for fractional powers, but left it for Wallis to publish (which he did, with appropriate credit to Newton). Newton formulated a theory of sound, but derived a speed which did not agree with his experiments. The reason for the discrepancy was that the concept of adiabatic propagation did not yet exist, so Newton's answer was too low by a factor of , where is the ratio of heat capacities of air. Newton therefore fudged his theory until agreement was achieved (Engineering and Science, pp. 15-16).
In Optics (1704), whose publication Newton delayed until Hooke's death, Newton observed that white light could be separated by a prism into a spectrum of different colors, each characterized by a unique refractivity, and proposed the corpuscular theory of light. Newton's views on optics were born out of the original prism experiments he performed at Cambridge. In his "experimentum crucis" (crucial experiment), he found that the image produced by a prism was oval-shaped and not circular, as current theories of light would require. He observed a half-red, half-blue string through a prism, and found the ends to be disjointed. He also observed Newton's rings, which are actually a manifestation of the wave nature of light which Newton did not believe in. Newton believed that light must move faster in a medium when it is refracted towards the normal, in opposition to the result predicted by Huygens's wave theory.
Newton also formulated a system of chemistry in Query 31 at the end of Optics. In this corpuscular theory, "elements" consisted of different arrangements of atoms, and atoms consisted of small, hard, billiard ball-like particles. He explained chemical reactions in terms of the chemical affinities of the participating substances. Newton devoted a majority of his free time later in life (after 1678) to fruitless alchemical experiments.
Newton was extremely sensitive to criticism, and even ceased publishing until the death of his arch-rival Hooke. It was only throu