已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,已知图中的每个小方格都是边长为1的小正方形(9*9的正方形格),每个小正方形的

来源:学生作业帮助网 编辑:作业帮 时间:2020/11/28 09:12:16

已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,
已知图中的每个小方格都是边长为1的小正方形(9*9的正方形格),每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81个格点中的多少个?( )说明理由!
8*8的正方形格
打错啦

y=(1/2)x²-(1/2)x+1
共8个格点,
解法见图片文件,左键点击放大,还不够大,再用左键在不够大的图片上一拖,就更大.ok

10个

在xoy平面内,取-4<=x<=4,0<=y<=8中的81个格点,要抛物线经过最多的格点,由对称性知,需顶点为原点,所以设抛物线的解析式为y=ax^2,a为正数,x,y为整数,x^2∈{0,1,4,9,16},
∴y∈{0,a,4a,9a,16a},a∈{1/16,1/9,1/8,1/4,1/3,1/2,1,2,3……}
若a=1/16,则抛物线y=(1/16)x^2过格点(0,0...

全部展开

在xoy平面内,取-4<=x<=4,0<=y<=8中的81个格点,要抛物线经过最多的格点,由对称性知,需顶点为原点,所以设抛物线的解析式为y=ax^2,a为正数,x,y为整数,x^2∈{0,1,4,9,16},
∴y∈{0,a,4a,9a,16a},a∈{1/16,1/9,1/8,1/4,1/3,1/2,1,2,3……}
若a=1/16,则抛物线y=(1/16)x^2过格点(0,0),(土4,1),共3个;
若a=1/9,则抛物线y=(1/9)x^2过格点(0,0),(土3,1),共3个;
若a=1/8,则抛物线y=(1/8)x^2过格点(0,0),(土4,2),共3个;
若a=1/4,则抛物线y=(1/4)x^2过格点(0,0),(土2,1),(土4,4)共5个;
若a=1/3,则抛物线y=(1/3)x^2过格点(0,0),(土3,3),共3个;
若a=1/2,则抛物线y=(1/2)x^2过格点(0,0),(土2,2),(土4,8),共5个;
若a=1,则抛物线y=x^2过格点(0,0),(土1,1),(土2,4),共5个;
若a=2,则抛物线y=2x^2过格点(0,0),(土1,2),(土2,8),共5个;
若3<=a<=8,a为整数,则抛物线y=ax^2过格点(0,0),(土1,a),共3个;
若a>8,则抛物线y=ax^2过1个格点(0,0)。
综上,所画的抛物线最多能经过81个格点中的5个。

收起

9*9的正方形格怎么是81个格点?应该是100个格点
如果是81个格点,那么应该是8*8的正方形格

在xoy平面内,取-4<=x<=4,0<=y<=8中的81个格点,要抛物线经过最多的格点,由对称性知,需顶点为原点,所以设抛物线的解析式为y=ax^2,a为正数,x,y为整数,x^2∈{0,1,4,9,16},
∴y∈{0,a,4a,9a,16a},a∈{1/16,1/9,1/8,1/4,1/3,1/2,1,2,3……}
若a=1/16,则抛物线y=(1/16)x^2过格点(0,0...

全部展开

在xoy平面内,取-4<=x<=4,0<=y<=8中的81个格点,要抛物线经过最多的格点,由对称性知,需顶点为原点,所以设抛物线的解析式为y=ax^2,a为正数,x,y为整数,x^2∈{0,1,4,9,16},
∴y∈{0,a,4a,9a,16a},a∈{1/16,1/9,1/8,1/4,1/3,1/2,1,2,3……}
若a=1/16,则抛物线y=(1/16)x^2过格点(0,0),(土4,1),共3个;
若a=1/9,则抛物线y=(1/9)x^2过格点(0,0),(土3,1),共3个;
若a=1/8,则抛物线y=(1/8)x^2过格点(0,0),(土4,2),共3个;
若a=1/4,则抛物线y=(1/4)x^2过格点(0,0),(土2,1),(土4,4)共5个;
若a=1/3,则抛物线y=(1/3)x^2过格点(0,0),(土3,3),共3个;
若a=1/2,则抛物线y=(1/2)x^2过格点(0,0),(土2,2),(土4,8),共5个;
若a=1,则抛物线y=x^2过格点(0,0),(土1,1),(土2,4),共5个;
若a=2,则抛物线y=2x^2过格点(0,0),(土1,2),(土2,8),共5个;
若3<=a<=8,a为整数,则抛物线y=ax^2过格点(0,0),(土1,a),共3个;
若a>8,则抛物线y=ax^2过1个格点(0,0)。
综上,所画的抛物线最多能经过81个格点中的5个。 追问答案是八个

收起

设y=ax^2+bx+c
过点(0,1),(1,1),(2,2)
代入抛物线方程,
得 1=0+0+c
1=a+b+c
2=4a+2b+c
解得a=1/2,b=-1/2,c=1
代入原抛物线
y=(1/2)x^2-(1/2)x+1
得点(-3,7)(-2,4)(-1,2)(0,1)(1,1)(2,2)(...

全部展开

设y=ax^2+bx+c
过点(0,1),(1,1),(2,2)
代入抛物线方程,
得 1=0+0+c
1=a+b+c
2=4a+2b+c
解得a=1/2,b=-1/2,c=1
代入原抛物线
y=(1/2)x^2-(1/2)x+1
得点(-3,7)(-2,4)(-1,2)(0,1)(1,1)(2,2)(3,4)(4,7)共八个

收起

在xoy平面内,取-4<=x<=4,0<=y<=8中的81个格点,要抛物线经过最多的格点,由对称性知,需顶点为原点,所以设抛物线的解析式为y=ax^2,a为正数,x,y为整数,x^2∈{0,1,4,9,16},
∴y∈{0,a,4a,9a,16a},a∈{1/16,1/9,1/8,1/4,1/3,1/2,1,2,3……}
若a=1/16,则抛物线y=(1/16)x^2过格点(0,0...

全部展开

在xoy平面内,取-4<=x<=4,0<=y<=8中的81个格点,要抛物线经过最多的格点,由对称性知,需顶点为原点,所以设抛物线的解析式为y=ax^2,a为正数,x,y为整数,x^2∈{0,1,4,9,16},
∴y∈{0,a,4a,9a,16a},a∈{1/16,1/9,1/8,1/4,1/3,1/2,1,2,3……}
若a=1/16,则抛物线y=(1/16)x^2过格点(0,0),(土4,1),共3个;
若a=1/9,则抛物线y=(1/9)x^2过格点(0,0),(土3,1),共3个;
若a=1/8,则抛物线y=(1/8)x^2过格点(0,0),(土4,2),共3个;
若a=1/4,则抛物线y=(1/4)x^2过格点(0,0),(土2,1),(土4,4)共5个;
若a=1/3,则抛物线y=(1/3)x^2过格点(0,0),(土3,3),共3个;
若a=1/2,则抛物线y=(1/2)x^2过格点(0,0),(土2,2),(土4,8),共5个;
若a=1,则抛物线y=x^2过格点(0,0),(土1,1),(土2,4),共5个;
若a=2,则抛物线y=2x^2过格点(0,0),(土1,2),(土2,8),共5个;
若3<=a<=8,a为整数,则抛物线y=ax^2过格点(0,0),(土1,a),共3个;
若a>8,则抛物线y=ax^2过1个格点(0,0)。
综上,所画的抛物线最多能经过81个格点中的5个
答案好像是八
自己夜宴加油啊

收起

推导如下:
①要经过最多的点,对称轴就应选择在中间;
以最左下角的点为原点建立坐标系,则对称轴是 ,则有 ,得 ;
②然后取离对称轴最近的2个点,则有当 或 时, ,
得到 或 ,得到 ;
③代入 ,得 ;
④若去掉 ,那么函数就是 ,经计算只有6个点;
⑤考虑 ,假设当 时, ,则求得 ,经验算显然不可以;
根据题意中的格点坐标整数...

全部展开

推导如下:
①要经过最多的点,对称轴就应选择在中间;
以最左下角的点为原点建立坐标系,则对称轴是 ,则有 ,得 ;
②然后取离对称轴最近的2个点,则有当 或 时, ,
得到 或 ,得到 ;
③代入 ,得 ;
④若去掉 ,那么函数就是 ,经计算只有6个点;
⑤考虑 ,假设当 时, ,则求得 ,经验算显然不可以;
根据题意中的格点坐标整数性,试值递推到 ,得到函数 ,
此时,所求的抛物线最多能经过81个格点中的8 个.
(2)验算如下:
当 或 时,有 ,这是符合题意的2个点;
当 或 时,有 ,这是符合题意的2个点;
当 或 时,有 ,这是符合题意的2个点;
当 或 时,有 ,这是符合题意的2个点,以上共计8个点.

收起

已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,已知图中的每个小方格都是边长为1的小正方形(9*9的正方形格),每个小正方形的 已知图中的每个小方格都是边长均为1的小正方形,则点c到直线ab的距离为( )(结果精确到0. 已知每个正方形边长为1,每个小正方形的顶点称为格点,画抛物线最多能经过81个格点中的中的多少个?1、已知图中的每个小方格都是边长为1的小正方形(9*9的正方形格),每个小正方形的顶点 如图,每个小方格都是边长为1的正方形,试算出五边形ABCDE的周长? 如图,方格纸中每个小方格都是边长为1的正方形 如图每个小方格都是边长为1的正方形(1)求角ADC的度数 如图,每个小方格都是边长为1的正方形,求图中格点四边形ABCD的周长和面积. 如图,每个小方格都是边长为1的正方形,试计算出五边形ABCDE的周长和面积.速度 已知如图,每个小方格的边长为1,则c到ab所在直线的距离为多少? 如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,三角形如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在 已知图中的每个小方格都是边长为1的小正方形(9*9的正方形格),每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81个格点中的多少个?( )说明理由! 如图正方形网格中的每个小正方形边长都是1,画出边长为√10的正方形(图为4x4方格)要图,急,马上要,注意,是边长! 已知在正方形网格中,每个小方格都是边长为1的正方形,A、B两点在小方格的顶点上,位置如图3所示,要使点C也在小方格的顶点上,且以A、B、C为顶点的三角形的面积为1个平方单位,则点C的个数为 一道初中数学题 10分悬赏分哦!已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81个格点的多少个? 注 已知图中每个小方格的边长是1厘米,求出逗号的周长 如图,方格纸中每个小方格都是边长为1,作一个钝角三角形,使其面积为4,并求出三边的边长. 如图,方格纸中每个小方格都是边长为1,作一个钝角三角形,使其面积为3,并求出三边的边长. 如图,每个小方格都是边长为1的小正方形,三角形ABC的位置如图所示,你能判断它是什么三角形?请说明理由